Summary Although poly (ADP-ribose) polymerase (PARP) inhibitors are active in homologous recombination (HR)-deficient cancers, their utility is limited by acquired resistance following restoration of HR. Here, we report that dinaciclib, an inhibitor of cyclin-dependent kinases (CDKs) 1, 2, 5 and 9, additionally has potent activity against CDK12, a transcriptional regulator of HR. In BRCA-mutated triple-negative breast cancer (TNBC) cells and patient-derived xenografts (PDXs), dinaciclib ablates restored HR and reverses PARP inhibitor resistance. Additionally, we show that de novo resistance to PARP inhibition in BRCA1-mutated cell lines and a PDX derived from a PARP inhibitor-naïve BRCA1 carrier is mediated by residual HR and is reversed by CDK12 inhibition. Finally, dinaciclib augments the degree of response in a PARP inhibitor-sensitive model, converting tumor growth inhibition to durable regression. These results highlight the significance of HR disruption as a therapeutic strategy and support the broad use of combined CDK12 and PARP inhibition in TNBC.
Breast and ovarian cancer patients harboring BRCA1/2 germline mutations have clinically benefitted from therapy with PARP inhibitor (PARPi) or platinum compounds, but acquired resistance limits clinical impact. In this study, we investigated the impact of mutations on BRCA1 isoform expression and therapeutic response. Cancer cell lines and tumors harboring mutations in exon 11 of BRCA1 express a BRCA1-Δ11q splice variant lacking the majority of exon 11. The introduction of frameshift mutations to exon 11 resulted in nonsense-mediated mRNA decay of full-length, but not the BRCA1-Δ11q isoform. CRISPR/Cas9 gene editing as well as overexpression experiments revealed that the BRCA1-Δ11q protein was capable of promoting partial PARPi and cisplatin resistance relative to full-length BRCA1, both in vitro and in vivo. Furthermore, spliceosome inhibitors reduced BRCA1-Δ11q levels and sensitized cells carrying exon 11 mutations to PARPi treatment. Taken together, our results provided evidence that cancer cells employ a strategy to remove deleterious germline BRCA1 mutations through alternative mRNA splicing, giving rise to isoforms that retain residual activity and contribute to therapeutic resistance.
Breast Cancer Type 1 Susceptibility Protein (BRCA1)-deficient cells have compromised DNA repair and are sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. Despite initial responses, the development of resistance limits clinical efficacy. Mutations in the BRCA Cterminal (BRCT) domain of BRCA1 frequently create protein products unable to fold that are subject to protease-mediated degradation. Here, we show HSP90-mediated stabilization of a BRCT domain mutant BRCA1 protein under PARP inhibitor selection pressure. The stabilized mutant BRCA1 protein interacted with PALB2-BRCA2-RAD51, was essential for RAD51 focus formation, and conferred PARP inhibitor as well as cisplatin resistance. Treatment of resistant cells with the HSP90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin reduced mutant BRCA1 protein levels and restored their sensitivity to PARP inhibition. Resistant cells also acquired a TP53BP1 mutation that facilitated DNA end resection in the absence of a BRCA1 protein capable of binding CtIP. Finally, concomitant increased mutant BRCA1 and decreased 53BP1 protein expression occur in clinical samples of BRCA1-mutated recurrent ovarian carcinomas that have developed resistance to platinum. These results provide evidence for a two-event mechanism by which BRCA1-mutant tumors acquire anticancer therapy resistance.homologous recombination | cancer therapy T he breast cancer 1, early onset (BRCA1) gene is commonly mutated in hereditary breast and ovarian cancers. The BRCA1 protein has multiple domains that mediate protein interactions; BRCA1 gene mutations may produce truncated proteins that lose the ability to interact with associated proteins. Additionally, mutations in the BRCA C-terminal (BRCT) domain of BRCA1 create protein folding defects that result in protease-mediated degradation (1-3).Cells that contain dysfunctional BRCA1 proteins are hypersensitive to DNA damaging agents (4). In particular, BRCA1-deficient cell lines are exquisitely sensitive to poly(ADP-ribose) polymerase (PARP) inhibition (5). Despite initial responses of BRCA1-mutant cancers to PARP inhibitor treatment (6), acquired resistance universally develops. Resistance may result from secondary mutations in the BRCA1 gene that restore the reading frame and produce a functional BRCA1 protein (7,8). In Brca1-mutated mouse mammary tumors, activation of p-glycoprotein or loss of p53 binding protein 1 (53BP1) expression resulting from truncating TP53BP1 mutations confers PARP inhibitor resistance (9). Loss of 53BP1 in BRCA1-deficient cells provides the Cterminal binding protein interacting protein (CtIP) with unrestricted access to DNA breaks, facilitating DNA end resection, an early step in homologous recombination (HR) (9-11).Following BRCA1-CtIP-mediated activation of DNA end resection, eventual BRCA2-mediated assembly of the RAD51 recombinase in nucleoprotein filaments is a critical step in HR. A role for BRCA1 in RAD51 loading and the mechanisms by which it participates have not been fully clarified. Of note, in PARP in...
Homologous recombination (HR)-defective cells, such as those lacking BRCA1/2, are hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition. However, BRCA-deficient tumors represent only a small fraction of adult cancers, potentially restricting the therapeutic utility of PARP inhibitor monotherapy. We previously showed that cyclin-dependent kinase (cdk)1 phosphorylates BRCA1, an event essential for efficient BRCA1 focus formation. Here, we show that cdk1 depletion or inhibition compromises the cellular capacity to repair DNA by HR. Combined cdk1 and PARP inhibition in BRCA wild-type cancer cells results in reduced colony formation, delayed human tumor xenograft growth and tumor regression with prolonged survival in a mouse lung adenocarcinoma model. Cdk1 inhibition did not sensitize non-transformed cells or tissues to PARP inhibition. Because reduced cdk1 activity impairs BRCA1 function and HR repair, cdk1 inhibition represents a plausible strategy for expanding the utility of PARP inhibitors to the BRCA-proficient cancer population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.