Objective. Sjögren's syndrome (SS) is an autoimmune condition affecting salivary glands, for which a clearly defined pathogenic autoantibody has yet to be identified. Autoantibodies that bind to the muscarinic M 3 receptors (M 3 R), which regulate fluid secretion in salivary glands, have been proposed in this context. However, there are no previous data that directly show antisecretory activity. This study was undertaken to investigate and characterize the antisecretory activity of anti-M 3 R. Methods. Microfluorimetric Ca 2؉ imaging and patch clamp electrophysiologic techniques were used to measure the secretagogue-evoked increase in [Ca 2؉] i and consequent activation of Ca 2؉ -dependent ion channels in individual mouse and human submandibular acinar cells. Together, these techniques form a sensitive bioassay that was used to determine whether IgG isolated from patients with primary SS and from control subjects has antisecretory activity.Results. IgG (2 mg/ml) from patients with primary SS reduced the carbachol-evoked increase in [Ca 2؉ ] i in both mouse and human acinar cells by ϳ50%. IgG from control subjects had no effect on the Ca 2؉ signal. Furthermore, the inhibitory action of primary SS patient IgG on the Ca 2؉ signal was acutely reversible. We repeated our observations using rabbit serum containing antibodies raised against the second extracellular loop of M 3 R and found an identical pattern of acutely reversible inhibition. Anti-M 3 R-positive serum had no effect on Ca 2؉-dependent ion channel activation evoked by the direct intracellular infusion of inositol 1,4,5-triphosphate.Conclusion. These observations show for the first time that IgG from patients with primary SS contains autoantibodies capable of damaging saliva production and contributing to xerostomia. The unusual but not unprecedented acute reversibility of the effects of anti-M 3 autoantibodies is the subject of further research.
The KChIPs (K+ channel-interacting proteins) are members of the NCS (neuronal calcium sensor) protein family of Ca2+-binding proteins. It is unclear to what extent the KChIPs have distinct functions although they all interact with Kv4 K+ channels. KChIP3 has also been shown to repress transcription of specific genes via binding to DRE (downstream regulatory element) motifs and all KChIPs may share this function. In the present study, we have compared the function of isoforms of the four KChIPs. KChIPs 1–4 were found to stimulate the traffic of Kv4.2 channels to the plasma membrane. KChIP3 expression in PC12 cells resulted in an increase in exocytosis evoked by activation of purinergic receptors. In contrast, KChIPs 1, 2 and 4, although expressed to the same extent, had no effect on secretion. In addition, KChIP3 but not KChIPs 1, 2 and 4 modified the ATP-induced Ca2+ signal resulting in a delay in recovery after the peak Ca2+ elevation and also specifically resulted in down-regulation of the Na+/Ca2+ exchanger NCX3, which could explain the effects on the Ca2+ signal and secretion. Regulation of NCX3 by KChIP3 has been shown to occur via its DREAM (DRE antagonist modulator) function [Gomez-Villafuertes, Torres, Barrio, Savignac, Gabellini, Rizzato, Pintado, Gutierrez-Adan, Mellstrom, Carafoli and Naranjo (2005) J. Neurosci. 25, 10822–10830] suggesting that this activity might depend on the cellular context of expression of the various KChIPs. These results reveal a new role for KChIP3 in the regulation of Ca2+-regulated secretion and also suggest that the functions of each of the KChIPs may be more specialized than previously appreciated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.