The concept of negative refraction is attracting a lot of attention. The
initial ideas and the misconceptions that have arisen are discussed in
sufficient detail to understand the conceptual structure that binds negative
refraction to the existence of backward wave and forward wave phenomena. A
presentation of the properties of isotropic media supporting backward waves is
followed by a discussion of negative phase velocity media, causality,
anisotropic crystals and some connections to photonic crystals. The historical
background is always coupled to a detailed presentation of all the issues. The
paper is driven numerically and is illustrated with the outcomes of original
FDTD simulations
Surface wave propagation at the interface between different types of gyrotropic materials and an isotropic negatively refracting medium, in which the relative permittivity and relative permeability are, simultaneously, negative is investigated. A general approach is taken that embraces both the gyroelectric and gyromagnetic materials, permitting the possibility of operating in either the low GHz, THz or the optical frequency regimes. The classical transverse Voigt configuration is adopted and a complete analysis of nonreciprocal surface wave dispersion is presented. The impact of the surface polariton modes upon the reflection of both plane waves and beams is discussed in terms of resonances and an example of the influence upon the Goos-Hänchen shift is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.