Insect pollinators are experiencing substantial declines as a result of habitat loss, agricultural intensification, invasive pests, and climate change. To investigate factors causing pollinator declines, evaluate the success of conservation measures, and institute long-term monitoring schemes, it is essential to validate and standardize pollinator sampling techniques. This study investigated how sampling duration, weather conditions, and abundance of floral resources influenced the results of timed pollinator counts by repeatedly sampling the same pollinator assemblage in an Irish meadow. The likelihood of detection of Apis mellifera, Bombus spp, solitary bees, and Syrphidae was strongly associated with the density of floral units or floral cover in the observation plot. Also, even though protocol criteria restricted pollinator counts to the middle of the day and benevolent weather, pollinator counts were strongly influenced by factors such as cloud cover, light levels, wind speed and relative humidity. Increasing the duration of the timed counts from 5-minutes to 30-minutes considerably increased the probability of detection of each pollinator group. Additionally, the perceived diversity of the pollinator assemblage at the meadow was markedly affected by sampling duration and floral abundance. To improve the consistency or comparability of studies using timed pollinator counts, we recommend that criteria are set restricting surveys to narrow ranges of weather conditions and floral density when possible. Additionally, pollinator field investigations or monitoring programs would benefit from a systematic evaluation of how erroneous non-detection of target taxa can be reduced to acceptable levels by modifying sampling duration.
Synthetic pesticides are used widely in agriculture to protect crops from pests, weeds and disease. However, their use also comes with a range of environmental concerns. One of which is effects of insecticides on non-target organisms such as bees, who provide pollination services for crops and wild plants. This systematic literature review quantifies the existing research on bees and insecticides broadly, and then focuses more specifically on non-neonicotinoid insecticides and non-honeybees. We find that articles on honeybees (Apis sp.) and insecticides account for 80% of all research, with all other bees combined making up 20%. Neonicotinoids were studied in 34% of articles across all bees and were the most widely studied insecticide class for non-honeybees overall, with almost three times as many studies than the second most studied class. Of non-neonicotinoid insecticide classes and non-honeybees; the most studied were pyrethroids and organophosphates followed by carbamates, and the most widely represented bee taxa were bumblebees (Bombus), followed by leaf-cutter bees (Megachile) and mason bees (Osmia). Research has taken place across several countries, with the highest numbers of articles from Brazil and the US, and with notable gaps from countries in Asia, Africa and Oceania. Mortality was the most studied effect type, while sub-lethal effects such as on behaviour were less studied. Few studies tested how insecticides were influenced by other multiple pressures, such as climate change and co-occurring pesticides (cocktail effects). As anthropogenic pressures do not occur in isolation, we suggest that future research also addresses these knowledge gaps. Given the changing global patterns in insecticide use, and the increasing inclusion of both non-honeybees and sub-lethal effects in pesticide risk assessment, there is a need for expanding research beyond current state to ensure a strong scientific evidence base for the development of risk assessment and associated policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.