Objective Tocodynamometry (Toco—strain gauge technology) provides contraction frequency and approximate duration of labor contractions, but suffers frequent signal dropout necessitating re-positioning by a nurse, and may fail in obese patients. The alternative invasive intrauterine pressure catheter (IUPC) is more reliable and adds contraction pressure information, but requires ruptured membranes and introduces small risks of infection and abruption. Electrohysterography (EHG) reports the electrical activity of the uterus through electrodes placed on the maternal abdomen. This study compared all three methods of contraction detection simultaneously in laboring women. Study Design Upon consent, laboring women were monitored simultaneously with Toco, EHG, and IUPC. Contraction curves were generated in real-time for the EHG and all three curves were stored electronically. A contraction detection algorithm was used to compare frequency and timing between methods. Seventy-three subjects were enrolled in the study; 14 were excluded due to hardware failure of one or more of the devices (12) or inadequate data collection duration(2). Results In comparison with the gold-standard IUPC, EHG performed significantly better than Toco with regard to Contractions Consistency Index (CCI). The mean CCI for EHG was 0.88 ± 0.17 compared to 0.69 ± 0.27 for Toco (p<.0001). In contrast to Toco, EHG was not significantly affected by obesity. Conclusion Toco does not correlate well with the gold-standard IUPC and fails more frequently in obese patients. EHG provides a reliable non-invasive alternative regardless of body habitus.
IntroductionWe hypothesized the expiratory time constant (ƬE) may be used to provide real time determinations of inspiratory plateau pressure (Pplt), respiratory system compliance (Crs), and total resistance (respiratory system resistance plus series resistance of endotracheal tube) (Rtot) of patients with respiratory failure using various modes of ventilatory support.MethodsAdults (n = 92) with acute respiratory failure were categorized into four groups depending on the mode of ventilatory support ordered by attending physicians, i.e., volume controlled-continuous mandatory ventilation (VC-CMV), volume controlled-synchronized intermittent mandatory ventilation (VC-SIMV), volume control plus (VC+), and pressure support ventilation (PSV). Positive end expiratory pressure as ordered was combined with all aforementioned modes. Pplt, determined by the traditional end inspiratory pause (EIP) method, was combined in equations to determine Crs and Rtot. Following that, the ƬE method was employed, ƬE was estimated from point-by-point measurements of exhaled tidal volume and flow rate, it was then combined in equations to determine Pplt, Crs, and Rtot. Both methods were compared using regression analysis.ResultsƬE, ranging from mean values of 0.54 sec to 0.66 sec, was not significantly different among ventilatory modes. The ƬE method was an excellent predictor of Pplt, Crs, and Rtot for various ventilatory modes; r2 values for the relationships of ƬE and EIP methods ranged from 0.94 to 0.99 for Pplt, 0.90 to 0.99 for Crs, and 0.88 to 0.94 for Rtot (P <0.001). Bias and precision values were negligible.ConclusionsWe found the ƬE method was just as good as the EIP method for determining Pplt, Crs, and Rtot for various modes of ventilatory support for patients with acute respiratory failure. It is unclear if the ƬE method can be generalized to patients with chronic obstructive lung disease. ƬE is determined during passive deflation of the lungs without the need for changing the ventilatory mode and disrupting a patient's breathing. The ƬE method obviates the need to apply an EIP, allows for continuous and automatic surveillance of inspiratory Pplt so it can be maintained ≤ 30 cm H2O for lung protection and patient safety, and permits real time assessments of pulmonary mechanics.
The purpose of the study was to compare the accuracy of a noninvasive fetal heart rate monitor with that of ultrasound, using a fetal scalp electrode as the gold standard, in laboring women of varying body habitus, throughout labor and delivery. Laboring women requiring fetal scalp electrode were monitored simultaneously with the investigational device (noninvasive fetal ECG), ultrasound, and fetal scalp electrode. An algorithm extracted the fetal heart rate from the noninvasive fetal ECG signal. Each noninvasive device recording was compared with fetal scalp electrode with regard to reliability by positive percent agreement and accuracy by root mean squared error. Seventy-one women were included in this analysis. Positive percent agreement was 83.4 ± 15.4% for noninvasive fetal ECG and 62.4 ± 26.7% for ultrasound. The root mean squared error compared with fetal scalp electrode-derived fetal heart rate was 4.8 ± 2.0 bpm for noninvasive fetal ECG and 14.3 ± 8.2 bpm for ultrasound. The superiority of noninvasive fetal ECG was maintained for stages 1 and 2 of labor and increases in body mass index. Compared with fetal scalp electrode-derived fetal heart rate, noninvasive fetal ECG is more accurate and reliable than ultrasound for intrapartum monitoring for stages 1 and 2 of labor and is less affected by increasing maternal body mass index. This confirms the results of other workers in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.