We report on the fabrication and characterization of fully organometallic multilayer thin films, composed of poly(ferrocenylsilane) polyanions and polycations. These polyions were deposited electrostatically onto a variety of substrates including quartz, silicon, gold, and hydrophilic/hydrophobically patterned substrates, using layer-by-layer self-assembly. The deposition process was monitored by means of UV/visible absorption spectroscopy, showing a linear increase in absorption with the number of bilayers. Ellipsometry was used to measure the development of film thickness with the number of bilayers, revealing a linear relationship and a thickness contribution of approximately 0.4 nm/bilayer. The multilayer films were further characterized by X-ray photoelectron spectroscopy (XPS) and by cyclic voltammetry. By integration of the voltammetric signals, the surface concentration of the redox-active ferrocene units was obtained as a function of the number of poly(ferrocenylsilane) bilayers. Selective adsorption of the polyions was achieved onto the hydrophobic stripes of a pattern of CH3and OH-terminated alkanethiol monolayers on gold, forming patterned organometallic multilayer structures. This selective deposition was explained by taking hydrophobic and hydrogen-bonding interactions into account. The hydrophobic backbone of the poly-(ferrocenylsilane) polyions has favorable hydrophobic interactions with the methyl-terminated areas of the patterned substrate but not with hydroxyl-terminated domains, which are hydrogen-bonded with the solvent. The dipping sequence does not influence the selectivity of the multilayer deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.