We screened DNA sequence variants on an exome-focused genotyping array in >300,000 participants with replication in >280,000 participants and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice revealed lipid changes consistent with the human data. We utilized mapped variants to address four clinically relevant questions and found the following: (1) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease; (2) outside of the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (3) only some mechanisms of lowering LDL-C seemed to increase risk for type 2 diabetes; and (4) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (e.g., TM6SF2, PNPLA3) tracked with higher liver fat, higher risk for type 2 diabetes, and lower risk for coronary artery disease whereas TG-lowering alleles involved in peripheral lipolysis (e.g., LPL, ANGPTL4) had no effect on liver fat but lowered risks for both type 2 diabetes and coronary artery disease.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses1–8. While pathological innate immune activation is well documented in severe disease1, the impact of autoantibodies on disease progression is less defined. Here, we used a high-throughput autoantibody discovery technique called Rapid Extracellular Antigen Profiling (REAP) to screen a cohort of 194 SARS-CoV-2 infected COVID-19 patients and healthcare workers for autoantibodies against 2,770 extracellular and secreted proteins (the “exoproteome”). We found that COVID-19 patients exhibit dramatic increases in autoantibody reactivities compared to uninfected controls, with a high prevalence of autoantibodies against immunomodulatory proteins including cytokines, chemokines, complement components, and cell surface proteins. We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signaling and by altering peripheral immune cell composition, and found that murine surrogates of these autoantibodies exacerbate disease severity in a mouse model of SARS-CoV-2 infection. Analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics and disease severity. In summary, these findings implicate a pathological role for exoproteome-directed autoantibodies in COVID-19 with diverse impacts on immune functionality and associations with clinical outcomes.
Objective Developing algorithms to extract phenotypes from electronic health records (EHRs) can be challenging and time-consuming. We developed PheMap, a high-throughput phenotyping approach that leverages multiple independent, online resources to streamline the phenotyping process within EHRs. Materials and Methods PheMap is a knowledge base of medical concepts with quantified relationships to phenotypes that have been extracted by natural language processing from publicly available resources. PheMap searches EHRs for each phenotype’s quantified concepts and uses them to calculate an individual’s probability of having this phenotype. We compared PheMap to clinician-validated phenotyping algorithms from the Electronic Medical Records and Genomics (eMERGE) network for type 2 diabetes mellitus (T2DM), dementia, and hypothyroidism using 84 821 individuals from Vanderbilt Univeresity Medical Center's BioVU DNA Biobank. We implemented PheMap-based phenotypes for genome-wide association studies (GWAS) for T2DM, dementia, and hypothyroidism, and phenome-wide association studies (PheWAS) for variants in FTO, HLA-DRB1, and TCF7L2. Results In this initial iteration, the PheMap knowledge base contains quantified concepts for 841 disease phenotypes. For T2DM, dementia, and hypothyroidism, the accuracy of the PheMap phenotypes were >97% using a 50% threshold and eMERGE case-control status as a reference standard. In the GWAS analyses, PheMap-derived phenotype probabilities replicated 43 of 51 previously reported disease-associated variants for the 3 phenotypes. For 9 of the 11 top associations, PheMap provided an equivalent or more significant P value than eMERGE-based phenotypes. The PheMap-based PheWAS showed comparable or better performance to a traditional phecode-based PheWAS. PheMap is publicly available online. Conclusions PheMap significantly streamlines the process of extracting research-quality phenotype information from EHRs, with comparable or better performance to current phenotyping approaches.
Background Breast cancer survivors have a high incidence of osteoporosis-related fractures; the associated factors are understudied. We investigated incidence of bone fracture and its associations with soy food consumption, exercise, and body mass index among breast cancer survivors. Methods This prospective study included 4139 stage 0–III breast cancer patients and 1987 pre-/perimenopausal and 2152 postmenopausal patients. Fractures were assessed at 18 months and at 3, 5, and 10 years after cancer diagnosis. Osteoporotic fractures were defined as fractures caused by falls from standing height and at sites associated with osteoporosis. Exercise and soy isoflavone intake were assessed at 6 and 18 months postdiagnosis. Weight and height were measured at baseline. Lifetable and Cox regression analyses were employed. All statistical tests were two sided. Results The 10-year incidence for osteoporotic fractures was 2.9% and 4.4% for pre-/perimenopausal and postmenopausal patients, respectively. High soy isoflavone intake was associated with reduced risk among pre-/perimenopausal patients (hazard ratio [HR] = 0.22, 95% confidence interval [CI] = 0.09 to 0.53, for soy isoflavone mg/d ≥56.06 vs <31.31; Ptrend < .001) but not among postmenopausal patients (Pinteraction < .01). Overweight (vs normal weight) was a risk factor for pre-/perimenopausal patients (HR = 1.81, 95% CI = 1.04 to 3.14) but not for postmenopausal patients (HR = 0.67, 95% CI = 0.43 to 1.03; Pinteraction = .01). Exercise was inversely associated with osteoporotic fractures in postmenopausal patients (HR = 0.56, 95% CI = 0.33 to 0.97, for metabolic equivalents hours ≥12.6 vs <4.5) following a dose-response pattern (Ptrend = .035), an association not modified by menopausal status. Conclusions Our findings, especially the novel association of soy food intake with osteoporotic fractures in breast cancer survivors, if confirmed, can help guide future strategies for fracture risk reduction in this vulnerable population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.