Particulate matter with aerodynamic diameter <2.5 μm (PM2.5) is associated with asthma exacerbation. In the Children's Air Pollution Asthma Study, we investigated the longitudinal association of PM2.5 and its components from indoor and outdoor sources with cough and wheeze symptoms in 36 asthmatic children. The sulfur tracer method was used to estimate infiltration factors. Mixed proportional odds models for an ordinal response were used to relate daily cough and wheeze scores to PM2.5 exposures. The odds ratio associated with being above a given symptom score for a SD increase in PM2.5 from indoor sources (PMIS) was 1.24 (95% confidence interval: 0.92-1.68) for cough and 1.63 (1.11-2.39) for wheeze. Ozone was associated with wheeze (1.82, 1.19-2.80), and cough was associated with indoor PM2.5 components from outdoor sources (denoted with subscript "OS") bromine (BrOS: 1.32, 1.05-1.67), chlorine (ClOS: 1.27, 1.02-1.59) and pyrolyzed organic carbon (OPOS: 1.49, 1.12-1.99). The highest effects were seen in the winter for cough with sulfur (SOS: 2.28, 1.01-5.16) and wheeze with organic carbon fraction 2 (OC2OS: 7.46, 1.19-46.60). Our results indicate that exposure to components originating from outdoor sources of photochemistry, diesel and fuel oil combustion is associated with symptom's exacerbation, especially in the winter. PM2.5 mass of indoor origin was more strongly associated with wheeze than with cough.
Individuals spend ∼90% of their time indoors in proximity to sources of particulate and gaseous air pollutants. The sulfur tracer method was used to separate indoor concentrations of particulate matter (PM) PM2.5 mass, elements and thermally resolved carbon fractions by origin in New York City residences of asthmatic children. Enrichment factors relative to sulfur concentrations were used to rank species according to the importance of their indoor sources. Mixed effects models were used to identify building characteristics and resident activities that contributed to observed concentrations. Significant indoor sources were detected for OC1, Cl, K and most remaining OC fractions. We attributed 46% of indoor PM2.5 mass to indoor sources related to OC generation indoors. These sources include cooking (NO2, Si, Cl, K, OC4 and OP), cleaning (most OC fractions), candle/incense burning (black carbon, BC) and smoking (K, OC1, OC3 and EC1). Outdoor sources accounted for 28% of indoor PM2.5 mass, mainly photochemical reaction products, metals and combustion products (EC, EC2, Br, Mn, Pb, Ni, Ti, V and S). Other indoor sources accounted for 26% and included re-suspension of crustal elements (Al, Zn, Fe, Si and Ca). Indoor sources accounted for ∼72% of PM2.5 mass and likely contributed to differences in the composition of indoor and outdoor PM2.5 exposures.
The aim of this review is to present the clinical data on the efficacy and safety of cilomilast in patients with chronic obstructive pulmonary disease (COPD). Over 6000 COPD patients received cilomilast during an extensive clinical development programme performed by GlaxoSmithKline (GSK).Five phase III randomized, double-blind, placebo-controlled, parallel-group pivotal studies were conducted in poorly reversible patients (<15% or <200 mL improvement over baseline in forced expiratory volume in 1 second (FEV(1)) after salbutamol). Patients were randomized to receive oral cilomilast 15 mg (n = 2088) or placebo (n = 1408) twice daily for 24 weeks. The co-primary efficacy variables were changes from baseline in trough (predose) FEV(1) and in total score of the St George's Respiratory Questionnaire (SGRQ).Additional studies were performed to investigate the anti-inflammatory actions of cilomilast by measuring inflammatory cells and mediators in biopsies and induced sputum; to assess the long-term effects of cilomilast; to assess the cardiac safety of cilomilast; and to assess the efficacy of cilomilast on hyperinflation. Results from one of the phase III and from one supportive study have been previously published.In the phase III pivotal studies, when averaged over 24 weeks, the mean change from baseline in FEV(1) in the cilomilast group showed improvement compared with placebo in all studies (range 24-44 mL treatment difference). When averaged over 24 weeks, there was a similar improvement in the mean total SGRQ score in both treatment groups with a decrease ranging from -1.8 to -4.2 units in the cilomilast group and 0.4 to -4.9 units in the placebo group. Only one study, however, showed both a statistically and clinically meaningful difference between the two treatment groups (treatment difference -4.1 units; p < 0.001). Although cilomilast was shown to reduce COPD exacerbations in some of these studies, there was no effect on the incidence of COPD exacerbations in a study specifically powered to detect a difference compared with placebo.No significant change was found in the primary endpoints of the anti-inflammatory studies, although some anti-inflammatory activity was detected, including a reduction in tissue CD8+ T lymphocytes and CD68+ macrophages in airway biopsies. In addition, studies did not demonstrate a consistent significant effect of cilomilast on hyperinflation.In all studies, adverse events associated with the gastrointestinal body system were reported more frequently in the cilomilast group than the placebo group and predominantly occurred within the first 2 weeks of initiating cilomilast therapy.During the cilomilast development programme a number of different endpoints were investigated to characterize the efficacy and safety of this second-generation phosphodiesterase 4 inhibitor. Safety assessments throughout the late-phase programme did not reveal any evidence of serious safety concerns with the use of cilomilast. Previous studies in phase II and early phase III had shown improvements in effic...
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.