Heart transplant rejection is characterized pathologically by myocyte necrosis and apoptosis associated with interstitial mononuclear cell infiltration. Any one of these components can be targeted for noninvasive detection of transplant rejection. During apoptotic cell death, phosphatidylserine, a phospholipid that is normally confined to the inner leaflet of cell membrane bilayer, gets exteriorized. Technetium-99m-labeled annexin-V, an endogenous protein that has high affinity for binding to phosphatidylserine, has been administered intravenously for noninvasive identification of apoptotic cell death. In the present study of 18 cardiac allograft recipients, 13 patients had negative and five had positive myocardial uptake of annexin. These latter five demonstrated at least moderate transplant rejection and caspase-3 staining, suggesting apoptosis in their biopsy specimens. This study reveals the clinical feasibility and safety of annexin-V imaging for noninvasive detection of transplant rejection by targeting cell membrane phospholipid alterations that are commonly associated with the process of apoptosis.
Background-Apoptosis is common in advanced human atheroma and contributes to plaque instability. Because annexin V has a high affinity for exposed phosphatidylserine on apoptotic cells, radiolabeled annexin V may be used for noninvasive detection of apoptosis in atherosclerotic lesions. Methods and Results-Atherosclerotic plaques were produced in 5 rabbits by deendothelialization of the infradiaphragmatic aorta followed by 12 weeks of cholesterol diet; 5 controls were studied without manipulation. Animals were injected with human recombinant annexin V labeled with technetium-99m before imaging. Aortas were explanted for ex vivo imaging, macroautoradiography, and histological characterization of plaque. Radiolabeled annexin V cleared rapidly from the circulation (T 1/2 , ␣ 9 and  46 minutes). There was intense uptake of radiolabel within lesions by 2 hours; no uptake was seen in controls. The results were confirmed in the ex vivo imaging of the explanted aorta. Quantitative annexin uptake was 9.3-fold higher in lesion versus nonlesion areas; the lesion-to-blood ratio was 3.0Ϯ0.37. Annexin uptake paralleled lesion severity and macrophage burden; no correlation was observed with smooth muscle cells. DNA fragmentation staining of apoptotic nuclei was increased in advanced lesions with evolving necrotic cores, predominantly in macrophages; the uptake of radiolabel correlated with the apoptotic index. Conclusions-Because annexin V clears rapidly from blood and targets apoptotic macrophage population, it should constitute an attractive imaging agent for the noninvasive detection of unstable atherosclerotic plaques. (Circulation. 2003;108:3134-3139.)
This review provides a critical and thorough overview of the radiopharmaceutical development and in vivo evaluation of all apoptosis-detecting radioligands that have emerged so far, along with their possible applications in nuclear medicine. The following SPECT and PET radioligands are discussed: all forms of halogenated Annexin V (i.e. (123)I-labelled, (124)I-labelled, (125)I-labelled, (18)F-labelled), (99m)Tc/(94m)Tc-labelled Annexin V derivatives using different chelators and co-ligands (i.e. BTAP, Hynic, iminothiolane, MAG(3), EDDA, EC, tricarbonyl, SDH) or direct (99m)Tc-labelling, (99m)Tc-labelled Annexin V mutants and (99m)Tc/(18)F-radiopeptide constructs (i.e. AFIM molecules), (111)In-DTPA-PEG-Annexin V, (11)C-Annexin V and (64)Cu-, (67)Ga- and (68)Ga-DOTA-Annexin V. In addition, the potential role and clinical relevance of anti-PS monoclonal antibodies and other alternative apoptosis markers are reviewed, including: anti-Annexin V monoclonal antibodies, radiolabelled caspase inhibitors and substrates and mitochondrial membrane permeability targeting radioligands. Nevertheless, major emphasis is placed on the group of Annexin V-based radioligands, in particular (99m)Tc-Hynic-Annexin V, since this molecule is by far the most extensively investigated and best-characterised apoptosis marker at present. Furthermore, the newly emerging imaging modalities for in vivo detection of programmed cell death, such as MRI, MRS, optical, bioluminescent and ultrasound imaging, are briefly described. Finally, some future perspectives are presented with the aim of promoting the development of potential new strategies in pursuit of the ideal cell death-detecting radioligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.