Abstract-We present a new algorithm for task and motion planning (TMP) and discuss the requirements and abstractions necessary to obtain robust solutions for TMP in general. Our Iteratively Deepened Task and Motion Planning (IDTMP) method is probabilistically-complete and offers improved performance and generality compared to a similar, state-of-theart, probabilistically-complete planner. The key idea of IDTMP is to leverage incremental constraint solving to efficiently add and remove constraints on motion feasibility at the task level. We validate IDTMP on a physical manipulator and evaluate scalability on scenarios with many objects and long plans, showing order-of-magnitude gains compared to the benchmark planner and a four-times self-comparison speedup from our extensions. Finally, in addition to describing a new method for TMP and its implementation on a physical robot, we also put forward requirements and abstractions for the development of similar planners in the future.
We present a new constraint-based framework for task and motion planning (TMP). Our approach is extensible, probabilistically complete, and offers improved performance and generality compared with a similar, state-of-the-art planner. The key idea is to leverage incremental constraint solving to efficiently incorporate geometric information at the task level. Using motion feasibility information to guide task planning improves scalability of the overall planner. Our key abstractions address the requirements of manipulation and object rearrangement. We validate our approach on a physical manipulator and evaluate scalability on scenarios with many objects and long plans, showing order-of-magnitude gains compared with the benchmark planner and improved scalability from additional geometric guidance. Finally, in addition to describing a new method for TMP and its implementation on a physical robot, we also put forward requirements and abstractions for the development of similar planners in the future.
We present the first platform-independent evaluation method for Task and Motion Planning (TAMP). Previously point, various problems have been used to test individual planners for specific aspects of TAMP. However, no common set of metrics, formats, and problems have been accepted by the community. We propose a set of benchmark problems covering the challenging aspects of TAMP and a planner-independent specification format for these problems. Our objective is to better evaluate and compare TAMP planners, foster communication and progress within the field, and lay a foundation to better understand this class of planning problems.
Task and motion planning (TMP) combines discrete search and continuous motion planning. Earlier work has shown that to efficiently find a task-motion plan, the discrete search can leverage information about the continuous geometry. However, incorporating continuous elements into discrete planners presents challenges. We improve the scalability of TMP algorithms in tabletop scenarios with a fixed robot by introducing geometric knowledge into a constraint-based task planner in a robust way. The key idea is to learn a classifier for feasible motions and to use this classifier as a heuristic to order the search for a task-motion plan. The learned heuristic guides the search towards feasible motions and thus reduces the total number of motion planning attempts. A critical property of our approach is allowing robust planning in diverse scenes. We train the classifier on minimal exemplar scenes and then use principled approximations to apply the classifier to complex scenarios in a way that minimizes the effect of errors. By combining learning with planning, our heuristic yields order-of-magnitude run time improvements in diverse tabletop scenarios. Even when classification errors are present, properly biasing our heuristic ensures we will have little computational penalty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.