Heating therapies are increasingly used in cardiology, dermatology, gynecology, neurosurgery, oncology, ophthalmology, orthopedics, and urology, among other medical specialties. This widespread use of heating is driven primarily by the availability of new technology, not by a detailed understanding of the biothermomechanics. Without basic quantification of the underlying physical and chemical processes in terms of parameters that can be controlled clinically, identification of preferred interventions will continue to be based primarily on trial and error, thus necessitating large clinical studies and years of accumulative experience. Perusal of the literature reveals that much has been learned over the past century about the response of cells, proteins, and tissues to supra-physiologic temperatures; yet, the associated findings are reported in diverse journals and the underlying basic processes remain unidentified. In this review, we seek to contrast various findings on the kinetics of the thermal denaturation of collagen and to encourage investigators to consider the many open problems in part via a synthesis of results from the diverse literatures.
Studying the effects of saturated and unsaturated fatty acids on biological and model (liposomes) membranes could provide insight into the contribution of biophysical effects on the cytotoxicity observed with saturated fatty acids. In vitro experiments suggest that unsaturated fatty acids, such as oleate and linoleate, are less toxic, and have less of an impact on the membrane fluidity. To understand and assess the biophysical changes in the presence of the different fatty acids, we performed computational analyses of model liposomes with palmitate, oleate, and linoleate. The computational results indicate that the unsaturated fatty acid chain serves as a membrane stabilizer by preventing changes to the membrane fluidity. Based on a Voronoi tessellation analysis, unsaturated fatty acids have structural properties that can reduce the lipid ordering within the model membranes. In addition, hydrogen bond analysis indicates a more uniform level of membrane hydration in the presence of oleate and linoleate as compared to palmitate. Altogether, these observations from the computational studies provide a possible mechanism by which unsaturated fatty acids minimize biophysical changes and protect the cellular membrane and structure. To corroborate our findings, we also performed a liposomal leakage study to assess how the different fatty acids alter the membrane integrity of liposomes. This showed that palmitate, a saturated fatty acid, caused greater destabilization of liposomes (more “leaky”) than oleate, an unsaturated fatty acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.