Protein modeling is an increasingly popular area of machine learning research. Semi-supervised learning has emerged as an important paradigm in protein modeling due to the high cost of acquiring supervised protein labels, but the current literature is fragmented when it comes to datasets and standardized evaluation techniques. To facilitate progress in this field, we introduce the Tasks Assessing Protein Embeddings (TAPE), a set of five biologically relevant semi-supervised learning tasks spread across different domains of protein biology. We curate tasks into specific training, validation, and test splits to ensure that each task tests biologically relevant generalization that transfers to real-life scenarios. We benchmark a range of approaches to semi-supervised protein representation learning, which span recent work as well as canonical sequence learning techniques. We find that self-supervised pretraining is helpful for almost all models on all tasks, more than doubling performance in some cases. Despite this increase, in several cases features learned by self-supervised pretraining still lag behind features extracted by state-of-the-art non-neural techniques. This gap in performance suggests a huge opportunity for innovative architecture design and improved modeling paradigms that better capture the signal in biological sequences. TAPE will help the machine learning community focus effort on scientifically relevant problems. Toward this end, all data and code used to run these experiments are available at https://github.com/songlab-cal/tape. * Equal Contribution
The established approach to unsupervised protein contact prediction estimates co-evolving positions using undirected graphical models. This approach trains a Potts model on a Multiple Sequence Alignment, then predicts that the edges with highest weight correspond to contacts in the 3D structure. On the other hand, increasingly large Transformers are being pretrained on protein sequence databases but have demonstrated mixed results for downstream tasks, including contact prediction. This has sparked discussion about the role of scale and attention-based models in unsupervised protein representation learning. We argue that attention is a principled model of protein interactions, grounded in real properties of protein family data. We introduce a simplified attention layer, factored attention, and show that it achieves comparable performance to Potts models, while sharing parameters both within and across families. Further, we extract contacts from the attention maps of a pretrained Transformer and show they perform competitively with the other two approaches. This provides evidence that large-scale pretraining can learn meaningful protein features when presented with unlabeled and unaligned data. We contrast factored attention with the Transformer to indicate that the Transformer leverages hierarchical signal in protein family databases not captured by our single-layer models. This raises the exciting possibility for the development of powerful structured models of protein family databases.1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.