Absorption and fluorescence spectroscopy and laser photobleaching experiments were employed to probe the origins of the optical properties of humic substances (HS). Luminescence quantum yields and the wavelengths of maximum emission were acquired for Suwannee River humic acid (SRHA) and fulvic acid (SRFA) at an extensive series of excitation wavelengths across the ultraviolet and visible. Laser irradiation at a series wavelength across the ultraviolet and visible was further employed to destroy selectively chromophores absorbing at specific wavelengths, using absorption spectroscopy to follow the absorption losses with irradiation time. The results provide unequivocal evidence that the absorption and emission spectra of these materials cannot result solely from a simple linear superposition of the spectra of numerous independent chromophores. Instead, the long wavelength absorption tail of HS (>350 nm) appears to arise from a continuum of coupled states. We propose that this behavior results from intramolecular charge-transfer interactions between hydroxy-aromatic donors and quinoid acceptors formed by the partial oxidation of lignin precursors. We further propose that these donor-acceptor interactions may be a common phenomenon, occurring within all natural hydroxy- or polyhydroxy-aromatic polymers that form appropriate acceptors upon partial oxidation. Examples of such species include lignin, polyphenols, tannins, and melanins.
Complete optical absorption and fluorescence spectra were collected for a diverse suite of 0.2-pmfiltered marine, riverine, and estuarine waters, as well as for colored dissolved organic matter (CDOM) isolated from several of thcsc waters by solid-phase C,, extraction. Absorption and fluorescence parameters for these samples arc reported. For surface waters, variations in the fluorescence quantum yields obtained with 355-and 337-nm excitation fell within a narrow window (<2.5-fold variation about the mean values), demonstrating that fluorescence measurements can be used to determine absorption coefficients of CDOM in the ultraviolet region with reasonably good accuracy. Methods for predicting absorption coefficients and line shapes from the fluorescence data arc introduced and tested. The absorption and fluorescence spectra of CDOM extracted from some seawaters differed significantly from those of the original waters, demonstrating that material isolated by hydrophobic adsorption is not necessarily representative of the suite of colored organic matter present in aquatic systems. These results clearly illustrate that great care must be taken when extracted material is used to infer the optical properties of natural waters.
Absorption of sunlight by chromophoric dissolved natural organic matter (CDOM) is environmentally significant because it controls photic zone depth and causes photochemistry that affects elemental cycling and contaminant fate. Both the optics (absorbance and fluorescence) and photochemistry of CDOM display unusual properties that cannot easily be ascribed to a superposition of individual chromophores. These include (i) broad, unstructured absorbance that decreases monotonically well into the visible and near IR, (ii) fluorescence emission spectra that all fall into a single envelope regardless of the excitation wavelength, and (iii) photobleaching and photochemical quantum yields that decrease monotonically with increasing wavelength. In contrast to a simple superposition model, these phenomena and others can be reasonably well explained by a physical model in which charge-transfer interactions between electron donating and accepting chromophores within the CDOM control the optical and photophysical properties. This review summarizes current understanding of the processes underlying CDOM photophysics and photochemistry as well as their physical basis.
Extensive surveys of the fluorescence and absorption ol' chromophore-containing dissolved organic matter (CDOM), dissolved organic C (DOC) concenlration, chlorophyll fluorescence, and salinity were performed during August and November 1993 and March and April 1994 along a cruise line extending from the mouth of Delaware Bay southeast to the Sargasso Sea. With shallow stratification in August, photobleaching dramatically altered the optical properties of the surface waters, with -70% of the CDOM absorption and fluorescence lost through photooxidation in the waters at the outer shelf. S, the slope of the log-linearized absorption spectrum of CDOM, increased offshore and seemed to increase with photodcgradation. The increase in S combined with the seasonal variation in the relationship between Chl and CDOM underscores the difficulty in developing algorithms to predict Chl concentrations in turbid coastal waters with ocean color data. Despite the photooxidation of' CDOM, the seasonal variation in the CDOM fluorescence-absorption relationship and fluorescence quantum yields was <15%. When using appropriate methods, the airborne lidar approach for remote determination of CDOM absorption coefficients seems to be a very robust technique. The photooxidation of CDOM in August also affected the relationship between CDOM and DOC concentration in the surface waters, although for the rest of the year the relationship was reasonably linear. The results of a simple model suggest -10% of the DOC in the mixed layer was directly converted phdtochemically to dissolved inorganic C (DIG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.