Congo red is one of the best known and used azo dyes which has two azo bonds (-N=N-) chromophore in its molecular structure. Its structural stability makes it highly toxic and resistant to biodegradation. The objective of this study was to assess the congo red biodegradation and detoxification by Aspergillus niger. The effects of pH, initial dye concentration, temperature, and shaking speed on the decolorization rate and enzymes production were studied. The maximum decolorization was correlated with lignin peroxidase and manganese peroxidase production. Above 97% were obtained when 2 g mycelia were incubated at pH 5, in presence of 200 mg/L of dye during 6 days at 28°C and under 120 to 150 rpm shaking speed. The degraded metabolites were characterized by using LC-MS/MS analyses and the biodegradation mechanism was also studied. Congo red bioconversion formed degradation metabolites mainly by peroxidases activities, i.e., the sodium naphthalene sulfonate (m/z = 227) and the cycloheptadienylium (m/z = 91). Phytotoxicity and microtoxicity tests confirmed that degradation metabolites were less toxic than original dye.
Multi-contamination by organic pollutants and toxic metals is common in anthropogenic and industrial environments. In this study, the five fungal strains Chaetomium jodhpurense (MH667651.1), Chaetomium maderasense (MH665977.1), Paraconiothyrium variabile (MH667653.1), Emmia lacerata, and Phoma betae (MH667655.1), previously isolated in Tunisia, were investigated for the simultaneous removal and detoxification of phenanthrene (PHE) and benzo[a]anthracene (BAA), as well as heavy metals (HMs) (Cu, Zn, Pb and Ag) in Kirk’s media. The removal was analysed using HPLC, ultra-high performance liquid chromatography (UHPLC) coupled to a QToF mass spectrometer, transmission electron microscopy, and toxicology was assessed using phytotoxicity (Lepidium sativum seeds) and Microtox® (Allivibrio fisherii) assays. The PHE and BAA degradation rates, in free HMs cultures, reached 78.8% and 70.7%, respectively. However, the addition of HMs considerably affected the BAA degradation rate. The highest degradation rates were associated with the significant production of manganese-peroxidase, lignin peroxidase, and unspecific peroxygenase. The Zn and Cu removal efficacy was considerably higher with live cells than dead cells. Transmission electron microscopy confirmed the involvement of both bioaccumulation and biosorption processes in fungal HM removal. The environmental toxicological assays proved that simultaneous PAH and HM removal was accompanied by detoxification. The metabolites produced during co-treatment were not toxic for plant tissues, and the acute toxicity was reduced. The obtained results indicate that the tested fungi can be applied in the remediation of sites simultaneously contaminated with PAHs and HMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.