Operando Raman micro-spectroscopy of the membrane electrode assembly (MEA) of a fully operating hydrogen/oxygen Nafion electrolyte fuel cell is described. Coarse depth profiling of the fuel cell system enabled appropriate positioning of the microspectroscopy laser focal point for MEA catalytic layer spectroscopy. An increase in the ionomer state-of-hydration, from oxygen reduction at the cathode, transitions ion exchange sites from the sulfonic acid to the dissociated sulfonate form. Visualization of density functional theory calculated normal mode eigenvector animations enabled assignments of Nafion side-chain vibrational bands in terms of the exchange site local symmetry: C 1 and C 3V modes correlate to the sulfonic acid and sulfonate forms respectively. The gradual transition of the MEA spectra from C 1 to C 3V modes, from the fuel cell open circuit voltage to the short circuit current respectively, demonstrate the utility of vibrational group mode assignments in terms of exchange site local symmetry.
Infrared spectra of Nafion, Aquivion, and the 3M membrane were acquired during total dehydration of 18 fully hydrated samples. Fully hydrated exchange sites are in a sulfonate form with a C 3V local 19 symmetry. The mechanical coupling of the exchange site to a side chain ether link gives rise to 20 vibrational group modes that are classified as C 3V modes. These mode intensities diminish 21 concertedly with dehydration. When totally dehydrated, the sulfonic acid form of the exchange site is
The electron density topology of carbon monoxide (CO) on dry and hydrated platinum is evaluated under the quantum theory of atoms in molecules (QTAIM) and by adsorbate orbital approaches. The impact of water co-adsorbate on the electronic, structural, and vibrational properties of CO on Pt are modelled by periodic density functional theory (DFT). At low CO coverage, increased hydration weakens C–O bonds and strengthens C–Pt bonds, as verified by changes in bond lengths and stretching frequencies. These results are consistent with QTAIM, the 5σ donation-2π* backdonation model, and our extended π-attraction σ-repulsion model (extended π-σ model). This work links changes in the non-zero eigenvalues of the electron density Hessian at QTAIM bond critical points to changes in the π and σ C–O bonds with systematic variation of CO/H2O co-adsorbate scenarios. QTAIM invariably shows bond strengths and lengths as being negatively correlated. For atop CO on hydrated Pt, QTAIM and phenomenological models are consistent with a direct correlation between C–O bond strength and CO coverage. However, DFT modelling in the absence of hydration shows that C–O bond lengths are not negatively correlated to their stretching frequencies, in contrast to the Badger rule: When QTAIM and phenomenological models do not agree, the use of the non-zero eigenvalues of the electron density Hessian as inputs to the phenomenological models, aligns them with QTAIM. The C–O and C–Pt bond strengths of bridge and three-fold bound CO on dry and hydrated platinum are also evaluated by QTAIM and adsorbate orbital analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.