This paper proposed a fabrication of p-type Germanium (Ge) tri-gate field-effect transistors (Tri-gate FETs) via green nanosecond laser crystallization (GNSLC) and counter doping (CD). By using the GNSLC, the nano-crystalline-Ge (nc-Ge) with a grain size of 80 nm could be turned into polycrystalline Ge (poly-Ge) with that of above 1 μm. With the increase of laser power, the improved crystallinity and lower hole concentration of poly-Ge were also verified by Raman spectra and Hall measurement. To fabricate the high-performance Ge Tri-gate FETs, the chemical-mechanical planarization (CMP) and counter doping (CD) process would further be utilized. The CMP process eliminated the surface roughness of poly-Ge while the CD process decreased the hole concentration of poly-Ge or even converted that into an N-type one. The effect of the CD on the performance of ptype Ge Tri-gate FETs was further investigated. Consequently, the GNSLC Ge Tri-gate FETs showed threshold voltage (Vth) of -0.41 V, ION of 7.10×10 -6 , and IOFF of 1.28×10 -9 respectively, indicating better crystallinity of the Ge channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.