Vegetable sources and agro-industrial residues represent an important source of phenolic compounds that are useful in a wide range of applications, especially those with biological activities. Conventional techniques of phytochemical extraction have been associated with a high consumption of organic solvents that limits the application of bioactive extracts, leading to the implementation of novel extraction technologies using mechanisms such as Ultrasound Assisted Extraction (UAE). In the present review, an analysis of the involved variables in the extraction yield of phenolic compounds through UAE is presented, highlighting the advantages of this technology based on the results obtained in various optimized studies. A comparison with other technologies and a proposal of its possible application for agro industrial residues as raw material of phenolic compounds is also indicated. Finally, it is concluded that UAE is a technology that is placed within the area of Sustainable Chemistry since it promotes the use of renewable raw materials through the extraction of phenolic compounds, implementing the substitution of organic solvents with solvents that do not present toxic effects, lowering the energy consumption when compared to conventional methods and minimizing process times and temperatures, which is useful for the extraction of thermo-labile compounds.
Chitin production was biologically achieved by lactic acid fermentation (LAF) of shrimp waste (Litopenaeus vannameii) in a packed bed column reactor with maximal percentages of demineralization (D(MIN)) and deproteinization (D(PROT)) after 96 h of 92 and 94%, respectively. This procedure also afforded high free astaxanthin recovery with up to 2400 μg per gram of silage. Chitin product was also obtained from the shrimp waste by a chemical method using acid and alkali for comparison. The biologically obtained chitin (BIO-C) showed higher M(w) (1200 kDa) and crystallinity index (I(CR)) (86%) than the chemically extracted chitin (CH-C). A multistep freeze-pump-thaw (FPT) methodology was applied to obtain medium M(w) chitosan (400 kDa) with degree of acetylation (DA) ca. 10% from BIO-C, which was higher than that from CH-C. Additionally, I(CR) values showed the preservation of crystalline chitin structure in BIO-C derivatives at low DA (40-25%). Moreover, the FPT deacetylation of the attained BIO-C produced chitosans with bloc copolymer structure inherited from a coarse chitin crystalline morphology. Therefore, our LAF method combined with FPT proved to be an affective biological method to avoid excessive depolymerization and loss of crystallinity during chitosan production, which offers new perspective applications for this material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.