Particle Image Velocimetry measurements of the liquid velocity fields in the flow over the backward-facing step were performed in the same flow configuration as in the existing Direct Numerical Simulation (DNS). The experiment and the simulation were performed in an identical cross-section geometry with step expansion rate 2.25 and the square shape of the outlet duct at the Reynolds number in an inlet part of the section 7100. The experiment was performed in transparent test section, 1.2 m long, with 20 × 45 mm2 cross-section upstream and 45 × 45 mm2 downstream, while a domain that was three times shorter was used in the DNS. A 2D-2C PIV system with a single high-speed camera and a pulse laser was used for a series of two-dimensional measurements of the velocity field at several cross-sections from two different perspectives. Variables analyzed in the experiment are time-averaged fluid velocities, velocity RMS fluctuations and two components of the Reynolds stress tensor. The key novelty is the comparison of two very accurate approaches, PIV and DNS, in the same cross-section geometry. Comparison of the similarities, and especially the differences between the two approaches, elucidates uncertainties of both studies and answers the question on what kind of agreement is expected when two very accurate approaches are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.