A smart sensor label based on the integration of ultra high frequency (UHF) radio frequency identification (RFID) technology and sensors is presented. The label is composed of a semi-active system that measures temperature, light, relative humidity and gravimetric water content (GWC) in the soil. The deployed system provides a simple, cost effective solution to monitor and control the growing of plants in modern agriculture and is intended be a part of a smart wireless sensor network (WSN) for agricultural monitoring. This paper is focused on analysis and development of a moisture sensor to measure GWC. It is based on a capacitance measurement solution, the accuracy of which is enhanced using several sensor driving frequencies. Thanks to the cancellation of supply voltage variations, the modeling of the GWC sensor and readout circuit was correct. The results we measured were close to modeled values. The maximum measurement resolution of the capacitive moisture sensor was 0.07 pF. To get the GWC from measured capacitance, a scale was used to weigh the mass of water in the soil. The comparison between capacitance measurement and calculated soil GWC is presented. The RFID measurement system has energy harvesting capabilities and an ultra-low power microcontroller, which uses embedded software to control the measurement properties. The microcontroller has to choose the appropriate model depending on the measured amplitude and chosen frequency to calculate the actual voltage on the sensing capacitor.
Energy-harvesting passive RFID (radio frequency identification) tags provide countless possibilities as so-called smart tags. Smart tags can communicate with existing RFID readers or interrogators while providing a battery-less platform for internal and external sensors to enrich available information about the environment and smart tag it. A reduced cost and size as well as an increased lifespan and durability of battery-free smart tags offer improvements in areas such as transportation and product tracking. Battery-free smart tags can ideally support arbitrarily complex sensor measurements, but in reality energy limitations can introduce great reductions in operating range and thus application range. In this work, we present an example application of a smart tag with a passive HF (high-frequency) RFID tag IC (integrated circuit) and MEMS (micro electro-mechanical structure) sensor. A standard HF RFID reader connected to a PC (personal computer) allowed the RF (radio frequency) field to power and communicate with the smart tag. A Kalman filter, implemented on a PC, was used to correct and improve the raw sensor data of smart tag orientation. Measurement results showed that the MEMS sensor on the smart tag could be powered for continuous operation and that raw smart tag orientation data could be read while in the RF field of a standard HF RFID reader, but at a limited range.
The paper covers one of the communication technologies used in wireless sensor networks. We have presented improvements in existing radio frequency identification (RFID) systems to address the problem of the phase selection in active load modulation (ALM). The phase selection affects the interoperability of communication devices and has to be addressed in the design phase of a new tag. A novel transmission method is presented to make the phase selection irrelevant for device interoperability. A second solution is shown to improve the existing system synchronization, which allows operation with arbitrary selected phase. A mathematical analysis of signals present on the antenna was used together with the reference reader model to perform an analysis of proposed improvements. We proved that the proposed transmission method is less affected by phase selection. Furthermore, we demonstrated that existing system improvement allows synchronization and operation at an arbitrarily selected phase despite the continuous transmission and large signal-to-interference ratio.
The aim of this work is to tackle the problem of modulation wave shaping in the field of near field communication (NFC) radio frequency identification (RFID). For this purpose, a high-efficiency transmitter circuit was developed to comply with the strict requirements of the newest EMVCo and NFC Forum specifications for pulse shapes. The proposed circuit uses an outphasing modulator that is based on a digital-to-time converter (DTC). The DTC based outphasing modulator supports amplitude shift keying (ASK) modulation, operates at four times the 13.56 MHz carrier frequency and is made fully differential in order to remove the parasitic phase modulation components. The accompanying transmitter logic includes lookup tables with programmable modulation pulse wave shapes. The modulator solution uses a 64-cell tapped current controlled fully differential delay locked loop (DLL), which produces a 360° delay at 54.24 MHz, and a glitch-free multiplexor to select the individual taps. The outphased output from the modulator is mixed to create an RF pulse width modulated (PWM) output, which drives the antenna. Additionally, this implementation is fully compatible with D-class amplifiers enabling high efficiency. A test circuit of the proposed differential multi-standard reader’s transmitter was simulated in 40 nm CMOS technology. Stricter pulse shape requirements were easily satisfied, while achieving an output linearity of 0.2 bits and maximum power consumption under 7.5 mW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.