Wax esters are high-value products whose enzymatic synthesis is of increasing biotechnological interest. The fabrication of cell factories that mass-produce wax esters may provide a facile route towards a sustainable, and environment-friendly approach to a large-scale process for this commodity chemical. An expedient route for wax-ester biocatalysis may be facilitated by the action of enzymes termed wax ester synthases/diacylglycerol acyltransferases (WS/DGAT), which produce wax esters using fatty acids and alcohols as a precursor. In this work, we report the structure for a member of the WS/DGAT superfamily. The structural data in conjunction with bioinformatics and mutational analyses allowed us to identify the substrate binding pockets, and residues that may be important for catalysis. Using this information as a guide, we generated a mutant with preference towards shorter acyl-substrates. This study demonstrates the efficacy of a structure-guided engineering effort towards a WS/DGAT variant with preference towards wax esters of desired lengths.
Human lysine demethylase KDM5A is a chromatin-modifying enzyme associated with transcriptional regulation, because of its ability to catalyze removal of methyl groups from methylated lysine 4 of histone H3 (H3K4me3). Amplification of KDM5A is observed in many cancers, including breast cancer, prostate cancer, hepatocellular carcinoma, lung cancer, and gastric cancer. In this study, we employed alanine scanning mutagenesis to investigate substrate recognition of KDM5A and identify the H3 tail residues necessary for KDM5A-catalyzed demethylation. Our data show that the H3Q5 residue is critical for substrate recognition by KDM5A. Our data also reveal that the protein-protein interactions between KDM5A and the histone H3 tail extend beyond the amino acids proximal to the substrate mark. Specifically, demethylation activity assays show that deletion or mutation of residues at positions 14-18 on the H3 tail results in an 8-fold increase in the K M app , compared to wild-type 18mer peptide, suggesting that this distal epitope is important in histone engagement. Finally, we demonstrate that posttranslational modifications on this distal epitope can modulate KDM5A-dependent demethylation. Our findings provide insights into H3K4-specific recognition by KDM5A, as well as how chromatin context can regulate KDM5A activity and H3K4 methylation status.
Loganin is an iridoid glycoside of interest as both an intermediate in the biosynthesis of indole alkaloids in plants and as a bioactive compound itself. Loganic acid methyltransferase catalyzes the methylation of a monoterpenoid glycoside precursor to produce loganin and demonstrates stereospecificity for the (6S,7R) substrate. We have biochemically characterized this biocatalyst and elucidated the basis for its strict substrate specificity. These studies could help facilitate the design of new classes of monoterpenoid indole alkaloids of pharmaceutical interest.
Transesterification of fatty acids yields the essential component of biodiesel, but current processes are cost-prohibitive and generate waste. Recent efforts make use of biocatalysts that are effective in diverting products from primary metabolism to yield fatty acid methyl esters in bacteria. These biotransformations require the fatty acid O-methyltransferase (FAMT) from Mycobacterium marinum (MmFAMT). Although this activity was first reported in the literature in 1970, the FAMTs have yet to be biochemically characterized. Here, we describe several crystal structures of MmFAMT, which highlight an unexpected structural conservation with methyltransferases that are involved in plant natural product metabolism. The determinants for ligand recognition are analyzed by kinetic analysis of structure-based active-site variants. These studies reveal how an architectural fold employed in plant natural product biosynthesis is used in bacterial fatty acid O-methylation.
Egg envelopes of vertebrates are composed of a family of proteins called zona pellucida (ZP) proteins, which are distinguished by the presence of a common structural polymerizing motif, known as ZP domain. Teleostean fish chorion is a fibrous structure, consisting of protein members of the ZPB/ZP1 and the ZPC/ZP3 families, which are incorporated as tandemly repeating heterodimers inside chorion fibers. Computational analysis of multiple ZPB/ZP1 proteins from several teleostean species, reveals two potential "aggregation-prone" sequence segments, forming a specific polymerization interface (AG interface). These two peptides were synthesized and results are presented in this work from transmission electron microscopy, Congo red staining, X-ray fiber diffraction and ATR FT-IR, which clearly display the ability of these peptides to self-aggregate, forming amyloid-like fibrils. This, most probably implies that the AG interface of ZPB/ZP1 proteins plays an important role for the formation of the repeating ZPB-ZPC heterodimers, which constitute teleostean chorion fibrils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.