Abstract. Droughts cause enormous ecological, economical and societal damage, and they are already undergoing changes due to anthropogenic climate change. The issue of defining and quantifying droughts has long been a substantial source of uncertainty in understanding observed and projected trends. Atmosphere-based drought indicators, such as the Standardised Precipitation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI), are often used to quantify drought characteristics and their changes, sometimes as the sole metric representing drought. This study presents a detailed systematic analysis of SPI- and SPEI-based drought projections and their differences for Great Britain (GB), derived from the most recent set of regional climate projections for the United Kingdom (UK). We show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought frequency, extent, duration and seasonality using scenarios that are 2 and 4 ∘C above pre-industrial levels. The projected increases in drought frequency and extent are far greater based on the SPEI than based on the SPI. Importantly, compared with droughts of all intensities, isolated extreme droughts are projected to increase far more with respect to frequency and extent and are also expected to show more pronounced changes in the distribution of their event durations. Further, projected intensification of the seasonal cycle is reflected in an increasing occurrence of years with (extremely) dry summers combined with wetter-than-average winters. Increasing summer droughts also form the main contribution to increases in annual droughts, especially using the SPEI. These results show that the choice of atmospheric drought index strongly influences the drought characteristics inferred from climate change projections, with a comparable impact to the uncertainty from the climate model parameters or the warming level; therefore, potential users of these indices should carefully consider the importance of potential evapotranspiration in their intended context. The stark differences between SPI- and SPEI-based projections highlight the need to better understand the interplay between increasing atmospheric evaporative demand, moisture availability and drought impacts under a changing climate. The region-dependent projected changes in drought characteristics by two warming levels have important implications for adaptation efforts in GB, and they further stress the need for rapid mitigation.
Abstract. Droughts cause enormous ecological, economical and societal damage, and are already undergoing changes due to anthropogenic climate change. Understanding, anticipating and communicating these changes is essential to a wide range of stakeholders. In this study, the projected impacts of climate change on future atmospheric droughts in Great Britain were assessed for two warming levels (2 °C and 4 °C above pre-industrial levels) using the UKCP18 regional climate projections. As projected changes can be very sensitive to the choice of drought index, two indices were compared: the Standardized Precipitation Index (SPI), and the Standardized Precipitation Evapotranspiration Index (SPEI, which unlike the SPI, accounts for increasing potential evapotranspiration). The SPI and SPEI were used to quantify drought frequency, extent and duration of all droughts and of only extreme droughts. To provide context, aridity and seasonal precipitation and potential evapotranspiration changes were also assessed, as well as seasonal contributions to dryness at a yearly time scale. The UKCP18 regional simulations project (strongly) increasing drought frequency and extent due to climate change based on the SP(E)I almost everywhere in Great Britain. Importantly, the relative increase in frequency and extent is much more pronounced for extreme droughts than for more moderate droughts. Increasing longer-term dry conditions can be attributed mostly to more frequent dry and extremely dry summers, for which normal to wet winters are decreasingly able to compensate (even where winters are projected to become wetter). In general, using the SPEI results in far greater increases in drought frequency and extent than using the SPI. These differences are so substantive that at +2 °C the SPEI6-based projected changes reach a similar magnitude to the SPI6-based changes at +4 °C. Finally, projected changes in the distribution of drought durations depend on the drought index, region and warming level. These results illustrate that the choice of atmospheric drought index can have a decisive influence on changes in projected drought characteristics, and therefore users of these indices should be aware of the importance of potential evapotranspiration in their intended context when choosing a drought index. The stark differences between SPI- and SPEI-based projections highlight the need to understand the interplay between increasing atmospheric evaporative demand and moisture availability under a changing climate.
<div> <p>Extreme droughts can cause enormous ecological and economic damage, and are expected to become more severe in some regions due to climate change. For water managers, it is crucial to understand extreme droughts and how they are projected to change compared to previous droughts, in order to plan for resilience to these events.&#160;</p> </div><div> <p>Changes in water resources do not only result from changes in precipitation and periods of below normal precipitation (meteorological droughts), they are also shaped by changes in atmospheric moisture demand, characterized here by potential evaporation. Therefore we use two standardized indicators, the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evaporation Index (SPEI) to isolate the impact of projected changes in precipitation and potential evaporation. We consider the contribution of precipitation deficits and potential evaporation changes to projected changes in future drought duration, severity and frequency. We explore droughts and their development across different time scales, as their diversity &#8211; from flash droughts to creeping multi-year droughts &#8211; adds to the challenge.</p> <p>We make use of the recently released 12-member 12-km horizontal resolution perturbed parameter ensemble of spatially coherent regional UKCP18 climate projections (with and without bias adjustment). This ensemble of projections was produced by the UK Met Office by dynamically downscaling a perturbed parameter ensemble of HadGEM3-GC3.05 simulations with a regional variant. The skill of the UKCP18 regional ensemble members for drought simulation is evaluated by comparison with observed drought metrics for the baseline period.&#160; <br>Projected changes in UK climate according to the UKCP18 projections include wetter winters, drier summers and generally stronger temperature increases in summer than in winter. We assess how these changes contribute to changes in drought characteristics using SPI and SPEI for each member of the ensemble.&#160;</p> </div><div> <p>While this work focusses on meteorological droughts, it will be followed by a future analysis of their propagation to hydrological droughts. This project aims to support adaptation to droughts in the region of East Anglia and is conducted in collaboration with the water company Anglian Water.&#160;</p> </div>
<p>Hundreds of millions of people depend strongly on hydrological inputs in the mountainous regions of China and central Asia. Glacier runoff is a major contributor to this hydrological forcing, yet many glaciers in the region have undergone mass loss in recent years and this mass loss is expected to continue or increase in response to climatological change. As such it is important to assess the large-scale response of High Mountain Asia glaciers to climate change , and its effects on hydrology. We present here preliminary modelling investigations of glacier change and hydrological impacts in response to high-resolution climate model projections over the 21st century as a component of the project SWARM (Impacts Assessment to Support WAter Resources Management and Climate Change Adaptation for China). Our model chain consists of i) Open Global Glacier Model (OGGM), which allows for high-resolution glacier flowline modelling of multiple glaciers, and ii) the Framework for Understanding Structural Errors (FUSE) a modular framework for snow and hydrology modelling, which we used to assemble and run three hydrological models over the whole of China. Both FUSE and OGGM are forced by an ensemble of bias-corrected CORDEX-East Asia regional climate models (in turn forced by CMIP5 general circulation models), and outputs of OGGM are provided to FUSE. We discuss our application of OGGM to 80,000 glaciers in Chinese river catchments; our efforts to calibrate the mass balance model using an expanded set of geodetic mass balance constraints; and finally the projections of glacier, snow and streamflow changes in the 21st century. In particular, we discuss the robustness and uncertainties in the projections as sampled by our multi-model ensemble.</p>
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.