Investigation of trabecular bone around titanium implants by muCT can be considered highly reliable for determining trabecular bone parameters, with the exception of measuring direct bone-to-implant contact.
With the current CT scan technology, predictions of the mechanical properties of trabecular jaw bone based on Hounsfield values were only valid for jaws with a thin layer of cortical bone. For jaws with a thicker cortical layer, the prediction of the mechanical properties decreased significantly.
The aim of this study was to examine the influence of the Young's modulus of the implant material on the bone remodeling in a loaded condition. A combined animal experimental and computational study was set up. The animal experimental group comprised of 16 Saanen goats, each receiving one titanium implant (Young's modulus 110 GPa) and one high-density polyethylene (HDPE) implant (Young's modulus 1 GPa) in the left femoral condyle. Both types of implants received a titanium coating of 100 nm thickness. The implants protruded in the knee joint space and were directly weight bearing. The first group of eight goats was sacrificed after 6 weeks of loading and the second group of eight goats after 6 months of loading. The 16 femoral condyles with the 32 implants were prepared for microfocus computed tomography (micro-CT) scanning and histological sectioning. Three-dimensional trabecular bone parameters were calculated on the micro-CT images for the zones neck, middle, and apex of the implant. The percent of bone contact with the implant was measured on longitudinal histological sections. An axisymmetric finite element (FE) model was created to compare peri-implant bone strains and relative motion between a titanium and a HDPE implant for the experimental loading condition, and to assess the influence of different bone-implant interface (contact) conditions. From the statistical analysis of the 3D bone parameters, the difference between the titanium and HDPE implants was not significantly different (p > 0.05) between the zones (neck, middle, and apex) for both groups of goats. The implants could be considered in their entirety. After 6 weeks of loading, the PE implant presented lower connectivity and smaller marrow spaces in the circular region of 0-500 microm. In the region 500-1500 microm more bone volume was present for the PE implant. After 6 months, the PE implants showed more bone volume and thicker trabeculae than the titanium implants for the entire length of the implant. This effect was already present in the smallest region of interest, 0-500 microm. After 6 months more fibrous encapsulation was found around titanium implants. FE results demonstrated a substantial influence of the interface conditions on peri-implant strains and relative motion. For interface conditions that were representative for the early postoperative situation (involving press-fit and friction), differences in peri-implant bone strain distributions between titanium and HDPE could be related to the experimentally observed differences in amounts of bone and fibrous encapsulation. In contrast, differences in relative motion did not seem to play a role. Both the experimental and computational results suggest that implant stiffness can affect the peri-implant tissue response, which may be related to differences in peri-implant strains.
SummaryObjectives: The goal of this study was to examine the feasibility of in vivo imaging of trabecular bone around titanium implants by means of microfocus computed tomography (micro-CT) and the use of rabbits for this purpose. Materials and Methods: Ten male rabbits type Hollander, received a titanium implant (1.7 mm diameter and 10 mm length) in the trabecular bone of the left tibia. Seven weeks later a micro-CT scan was taken. Four rabbits were used to monitor potential harmful effects from X-ray absorption until 4 weeks after scanning. A second group of six rabbits was used for testing the hypothesis that a good correlation exists between in vivo micro-CT images and histological images of trabecular bone around titanium implants. The six rabbits were scanned and sacrificed immediately. The tibias were extracted and submitted to standard histological procedures. This resulted in a total of 12 histological sections and their corresponding 12 micro-CT images. Bone area measurements were performed at the left and right side of the implant in three regions: 0-500, 500-1000 and 1000-1500 µm distance from the implant interface. Intra-class correlations (ICC) were calculated between both techniques. Results: The four rabbits did not show any sign of radiodermatitis 4 weeks after scanning. In the micro-CT images of the group of six rabbits, trabeculae are visible, but not well defined, due to the presence of noise in the image. The ICC for the right implant side were 0.44 for zone 0-500 µm, 0.48 for zone 500-1000 µm and 0.40 for zone 1000-1500 µm. The ICC for the left implant side could not be calculated. Conclusion: A low agreement was found between the bone measurements from histology and in vivo micro-CT images. The
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.