A previous study on the evaluation of control charts for the mean with a Bayesian approach, based on predictive limits, was performed in such a way that neither prior nor sample information was taken into account. This work was developed to make a more complete study to evaluate the influence of the combination of the prior distribution with the sample information. It is assumed that the quality characteristic to be controlled can be modeled by a Normal distribution and two cases are considered: known and unknown variance. A Bayesian conjugate model is established, therefore the prior distribution for the mean is Normal and, in the case where the variance is unknown, the prior distribution for the variance is defined as the Inverse-Gamma(ν, ν). The posterior predictive distribution, which is also Normal, is used to establish the control limits of the chart. Signal propability is used to measure the performance of the control chart in phase II, with the predictive limits calculated under different specifications of the prior distributions, and two different sizes of the calibration sample and the future sample. The simulation study evaluates three aspects: the effects of sample sizes, the distance of the prior mean to the mean of the calibration sample, and an indicator of how informative is the prior distribution of the population mean. In addition, in the case of unknown variance, we study what is the effect of changing values in the parameter ν. We found that the false alarm rate could be quite large if the prior distribution is very informative which in turn leads to an ARL (average run length) biased chart, that is, the maximum of the ARL is not given when the process is under control. Besides, we foundgreat influence of the prior distribution on the control chart power when the size of the calibration and future samples are small, particulary when the prior is very informative. Finally, regarding the effect of the parameter ν, we found that the smaller the value, which means having a less informative prior distribution, the lower the power of the control chart.
En este artículo se estudia la robustificación de la carta basada en la raiz cuadrada de la varianza muestral generalizada √|S| para el control de la variabilidad de un proceso normal bivariado, en la etapa 1 de la Fase I de control, construida con observaciones sobre subgrupos racionales y utilizando los estimadores robustos MVE, MCD, estimador S. Estas cartas se comparan con la carta usual basada en el estimador insesgado muestral S de la matriz de covarianza ∑_0, en presencia de outliers provenientes de esquemas de perturbación del tipo contaminación con inflación de ∑_0 y contaminación perturbando sólo la correlación. Como medida de desempeño se usa el error cuadrático medio en la estimación de ∑_0 y el sesgo absoluto en la estimación de √(|∑_0 | ), sobre los estimadores insesgados para cada uno de estos parámetros, respectivamente, construidos con los subgrupos racionales que quedan después del proceso de depuración realizado en la Fase I y que se consideran como el conjunto de datos que representa el estado de variación estable del proceso.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.