Premature infants are at high risk for developing bronchopulmonary dysplasia (BPD), characterized by chronic inflammation and inhibition of lung development, which we have recently identified as being modulated by microRNAs (miRNAs) and alterations in the airway microbiome. Exosomes and exosomal miRNAs may regulate cell differentiation and tissue and organ development. We discovered that tracheal aspirates from infants with severe BPD had increased numbers of, but smaller, exosomes compared with term controls. Similarly, bronchoalveolar lavage fluid from hyperoxia-exposed mice (an animal model of BPD) and supernatants from hyperoxia-exposed human bronchial epithelial cells (in vitro model of BPD) had increased exosomes compared with air controls. Next, in a prospective cohort study of tracheal aspirates obtained at birth from extremely preterm infants, utilizing independent discovery and validation cohorts, we identified unbiased exosomal miRNA signatures predictive of severe BPD. The strongest signal of reduced miR-876-3p in BPD-susceptible compared with BPD-resistant infants was confirmed in the animal model and in vitro models of BPD. In addition, based on our recent discovery of increased Proteobacteria in the airway microbiome being associated with BPD, we developed potentially novel in vivo and in vitro models for BPD combining Proteobacterial LPS and hyperoxia exposure. Addition of LPS led to a larger reduction in exosomal miR 876-3p in both hyperoxia and normoxia compared with hyperoxia alone, thus indicating a potential mechanism by which alterations in microbiota can suppress miR 876-3p. Gain of function of miR 876-3p improved the alveolar architecture in the in vivo BPD model, demonstrating a causal link between miR 876-3p and BPD. In summary, we provide evidence for the strong predictive biomarker potential of miR 876-3p in severe BPD. We also provide insights on the pathogenesis of neonatal lung disease, as modulated by hyperoxia and microbial product-induced changes in exosomal miRNA 876-3p, which could be targeted for future therapeutic development.
Hypoxia enhances transforming growth factor-β (TGF-β) signaling, inhibiting alveolar development and causing abnormal pulmonary arterial remodeling in the newborn lung. We hypothesized that, during chronic hypoxia, reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling may contribute to, or be caused by, excessive TGF-β signaling. To determine whether PPAR-γ was reduced during hypoxia, C57BL/6 mice were exposed to hypoxia from birth to 2 wk and evaluated for PPAR-γ mRNA and protein. To determine whether rosiglitazone (RGZ, a PPAR-γ agonist) supplementation attenuated the effects of hypoxia, mice were exposed to air or hypoxia from birth to 2 wk in combination with either RGZ or vehicle, and measurements of lung histology, function, parameters related to TGF-β signaling, and collagen content were made. To determine whether excessive TGF-β signaling reduced PPAR-γ, mice were exposed to air or hypoxia from birth to 2 wk in combination with either TGF-β-neutralizing antibody or vehicle, and PPAR-γ signaling was evaluated. We observed that hypoxia reduced PPAR-γ mRNA and protein, in association with impaired alveolarization, increased TGF-β signaling, reduced lung compliance, and increased collagen. RGZ increased PPAR-γ signaling, with improved lung development and compliance in association with reduced collagen and TGF-β signaling. However, no reduction was noted in hypoxia-induced pulmonary vascular remodeling. Inhibition of hypoxia-enhanced TGF-β signaling increased PPAR-γ signaling. These results suggest that hypoxia-induced inhibition of lung development is associated with a mutually antagonistic relationship between reduced PPAR-γ and increased TGF-β signaling. PPAR-γ agonists may be of potential therapeutic significance in attenuating TGF-β signaling and improving alveolar development.
MicroRNAs (miRs) are small conserved RNA that regulate gene expression. Bioinformatic analysis of miRNA profiles during mouse lung development indicated a role for multiple miRNA, including miRNA-489. miR-489 increased on completion of alveolar septation [postnatal day 42 (P42)], associated with decreases in its conserved target genes insulin-like growth factor-1 (Igf1) and tenascin C (Tnc). We hypothesized that dysregulation of miR-489 and its target genes Igf1 and Tnc contribute to hyperoxia-induced abnormal lung development. C57BL/6 mice were exposed to normoxia (21%) or hyperoxia (85% O2) from P4 to P14, in combination with intranasal locked nucleic acid against miR-489 to inhibit miR-489, cytomegalovirus promoter (pCMV)-miR-489 to overexpress miR-489, or empty vector. Hyperoxia reduced miR-489 and increased Igf1 and Tnc. Locked nucleic acid against miR-489 improved lung development during hyperoxia and did not alter it during normoxia, whereas miR-489 overexpression inhibited lung development during normoxia. The 3' untranslated region in vitro reporter studies confirmed Igf1 and Tnc as targets of miR-489. While miR-489 was of epithelial origin and present in exosomes, its targets Igf1 and Tnc were produced by fibroblasts. Infants with bronchopulmonary dysplasia (BPD) had reduced lung miR-489 and increased Igf1 and Tnc compared with normal preterm or term infants. These results suggest increased miR-489 is an inhibitor of alveolar septation. During hyperoxia or BPD, reduced miR-489 and increased Igf1 and Tnc may be inadequate attempts at compensation. Further inhibition of miR-489 may permit alveolar septation to proceed. The use of specific miRNA antagonists or agonists may be a therapeutic strategy for inhibited alveolarization, such as in BPD.
Our results indicating that endothelial cells of premature infants who later develop BPD or die have impaired mitochondrial bioenergetic capacity and produce more oxidants at birth suggest that the vascular endothelial mitochondrial dysfunction seen at birth in these infants persists through their postnatal life and contributes to adverse pulmonary outcomes and increased early mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.