Aromatic hydrogenation is a challenging transformation typically requiring alkali or transition metal reagents and/or harsh conditions to facilitate the process. In sharp contrast, the aromatic heterocycle 2,4,6-tri-tert-butyl-1,3,5-triphosphabenzene is shown to be reduced under 4 atm of H2 to give [3.1.0]bicylo reduction products, with the structure of the major isomer being confirmed by X-ray crystallography. NMR studies show this reaction proceeds via a reversible 1,4-H2 addition to generate an intermediate species, which undergoes an irreversible suprafacial hydride shift concurrent with P-P bond formation to give the isolated products. Further, para-hydrogen experiments confirmed the addition of H2 to triphosphabenzene is a bimolecular process. Density functional theory (DFT) calculations show that facile distortion of the planar triphosphabenzene toward a boat-conformation provides a suprafacial combination of vacant acceptor and donor orbitals that permits this direct and uncatalyzed reduction of the aromatic molecule.
The coordination modes of the [Au(PPh3)](+) cation to metal alkynyl complexes have been investigated. On addition to ruthenium, a vinylidene complex, [Ru(η(5)-C5H5)(PPh3)2([double bond, length as m-dash]C[double bond, length as m-dash]CPh{AuPPh3})](+), is obtained while addition to a gold(iii) compound gives di- and trinuclear gold complexes depending on the conditions employed. In the trinuclear species, a gold(i) cation is sandwiched between two gold(iii) alkynyl complexes, suggesting that coordination of multiple C-C triple bonds to gold is facile.
2,4,6-Tri-tert-butyl-1,3,5-triphosphabenzene forms η 1 complexes with [AuL] + . Significant structural differences are observed between the P 3 (C t Bu) 3 units, depending on the auxiliary ligand bound to gold. For L = NHC, a planar P 3 (C t Bu) 3 is observed; for L = P( t Bu) 2 (o-biphenyl), the P 3 (C t Bu) 3 ligand is significantly puckered in the solid state. NICS computations on model complexes suggest this puckering only has a minor effect on the aromaticity of the heterocyclic ring.is important to note that even in this extreme the TPB′ unit remains significantly aromatic.In summary, we have synthesized two cationic gold(I) complexes of η 1 -triphosphabenzene. The triphosphabenzene is significantly puckered in the solid-state structure of one of these complexes, but NICS computations suggest this only marginally perturbs the aromaticity of the heterocyclic ring.■ ASSOCIATED CONTENT * S Supporting Information Text, figures, tables, and CIF files giving experimental details, characterization data, and X-ray crystal structure data. This material is available free of charge via the Internet at http:// pubs.acs.org.
Oxidative addition of aryl bromides to 12-electron [Rh(PiBu(3))(2)][BAr(F)(4)] (Ar(F)=3,5-(CF(3))(2)C(6)H(3)) forms a variety of products. With p-tolyl bromides, Rh(III) dimeric complexes result [Rh(PiBu(3))(2)(o/p-MeC(6)H(4))(mu-Br)](2)[BAr(F)(4)](2). Similarly, reaction with p-ClC(6)H(4)Br gives [Rh(PiBu(3))(2)(p-ClC(6)H(4))(mu-Br)](2)[BAr(F)(4)](2). In contrast, the use of o-BrC(6)H(4)Me leads to a product in which toluene has been eliminated and an isobutyl phosphine has undergone C-H activation: [Rh{PiBu(2)(CH(2)CHCH(3)CH(2))}(PiBu(3))(mu-Br)](2)[BAr(F)(4)](2). Trapping experiments with ortho-bromo anisole or ortho-bromo thioanisole indicate that a possible intermediate for this process is a low-coordinate Rh(III) complex that then undergoes C-H activation. The anisole and thioanisole complexes have been isolated and their structures show OMe or SMe interactions with the metal centre alongside supporting agostic interactions, [Rh(PiBu(3))(2)(C(6)H(4)OMe)Br][BAr(F)(4)] (the solid-state structure of the 5-methyl substituted analogue is reported) and [Rh(PiBu(3))(2)(C(6)H(4)SMe)Br][BAr(F)(4)]. The anisole-derived complex proceeds to give [Rh{PiBu(2)(CH(2)CHCH(3)CH(2))}(PiBu(3))(mu-Br)](2)[BAr(F)(4)](2), whereas the thioanisole complex is unreactive. The isolation of [Rh(PiBu(3))(2)(C(6)H(4)OMe)Br][BAr(F)(4)] and its onward reactivity to give the products of C-H activation and aryl elimination suggest that it is implicated on the pathway of a sigma-bond metathesis reaction, a hypothesis strengthened by DFT calculations. Calculations also suggest that C-H bond cleavage through phosphine-assisted deprotonation of a non-agostic bond is also competitive, although the subsequent protonation of the aryl ligand is too high in energy to account for product formation. C-H activation through oxidative addition is also ruled out on the basis of these calculations. These new complexes have been characterised by solution NMR/ESIMS techniques and in the solid-state by X-ray crystallography.
Cationic gold(I) complexes of phosphaalkynes are formed by the interaction of [PtBu 2 (o-biphenyl)AuCl] with AgSbF 6 and an excess amount of RCϵP in CH 2 Cl 2 at room temperature. Free and coordinated phosphaalkyne readily exchange [a]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.