Complement and FcγR effector pathways are central triggers of immune inflammation; however, the exact mechanisms for their cooperation with effector cells and their nature remain elusive. In this study we show that in the lung Arthus reaction, the initial contact between immune complexes and alveolar macrophages (AM) results in plasma complement-independent C5a production that causes decreased levels of inhibitory FcγRIIB, increased levels of activating FcγRIII, and highly induced FcγR-mediated TNF-α and CXCR2 ligand production. Blockade of C5aR completely reversed such changes. Strikingly, studies of pertussis toxin inhibition show the essential role of Gi-type G protein signaling in C5aR-mediated control of the regulatory FcγR system in vitro, and analysis of the various C5aR-, FcγR-, and Gi-deficient mice verifies the importance of Gαi2-associated C5aR and the FcγRIII-FcγRIIB receptor pair in lung inflammation in vivo. Moreover, adoptive transfer experiments of C5aR- and FcγRIII-positive cells into C5aR- and FcγRIII-deficient mice establish AM as responsible effector cells. AM lacking either C5aR or FcγRIII do not possess any such inducibility of immune complex disease, whereas reconstitution with FcγRIIB-negative AM results in an enhanced pathology. These data suggest that AM function as a cellular link of C5a production and C5aR activation that uses a Gαi2-dependent signal for modulating the two opposing FcγR, FcγRIIB and FcγRIII, in the initiation of the inflammatory cascade in the lung Arthus reaction.
Complement activation plays a key role in mediating apoptosis, inflammation, and transplant rejection. In this study, the role of the complement 5a receptor (C5aR) was examined in human renal allografts and in an allogenic mouse model of renal transplant rejection. In human kidney transplants with acute rejection, C5aR expression was increased in renal tissue and in cells infiltrating the tubulointerstitium. Similar findings were observed in mice. When recipient mice were treated once daily with a C5aR antagonist before transplantation, long-term renal allograft survival was markedly improved compared with vehicle-treatment (75 versus 0%), and apoptosis was reduced. Furthermore, treatment with a C5aR antagonist significantly attenuated monocyte/macrophage infiltration, perhaps a result of reduced levels of monocyte chemoattractant protein 1 and the intercellular adhesion molecule 1. In vitro, C5aR antagonism inhibited intercellular adhesion molecule 1 upregulation in primary mouse aortic endothelial cells and reduced adhesion of peripheral blood mononuclear cells. Furthermore, C5aR blockade markedly reduced alloreactive T cell priming. These results demonstrate that C5aR plays an important role in mediating acute kidney allograft rejection, suggesting that pharmaceutical targeting of C5aR may have potential in transplantation medicine.
IntroductionAngiopoietin-1 (Angpt1), the natural agonist ligand for the endothelial Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor that reduces endothelial permeability and inhibits leukocyte-endothelium interactions. Here we evaluate the efficacy of a novel polyethylene glycol (PEG)-clustered Tie2 agonist peptide, vasculotide (VT), to protect against vascular leakage and mortality in a murine model of polymicrobial abdominal sepsis.MethodsPolymicrobial abdominal sepsis in C57BL6 mice was induced by cecal-ligation-and-puncture (CLP). Mice were treated with different dosages of VT or equal volume of phosphate-buffered saline (PBS). Sham-operated animals served as time-matched controls.ResultsSystemic administration of VT induced long-lasting Tie2 activation in vivo. VT protected against sepsis-induced endothelial barrier dysfunction, as evidenced by attenuation of vascular leakage and leukocyte transmigration into the peritoneal cavity. Histological analysis revealed that VT treatment ameliorated leukocyte infiltration in kidneys of septic mice, probably due to reduced endothelial adhesion molecule expression. VT-driven effects were associated with significantly improved organ function and reduced circulating cytokine levels. The endothelial-specific action of VT was supported by additional in vitro studies showing no effect of VT on either cytokine release from isolated peritoneal macrophages, or migratory capacity of isolated neutrophils. Finally, administration of VT pre-CLP (hazard ratio 0.39 [95% confidence interval 0.19-0.81] P < 0.001) and post-CLP reduced mortality in septic mice (HR 0.22 [95% CI 0.06-0.83] P < 0.05).ConclusionsWe provide proof of principle in support of the efficacious use of PEGylated VT, a drug-like Tie2 receptor agonist, to counteract microvascular endothelial barrier dysfunction and reduce mortality in a clinically relevant murine sepsis model. Further studies are needed to pave the road for clinical application of this therapeutic concept.
A synthetic 7-mer, HHHRHSF, was recently identified by screening a phage display library for binding to the Tie-2 receptor. A polyethylene-oxide clustered version of this peptide, termed vasculotide (VT), was reported to activate Tie-2 and promote angiogenesis in a mouse model of diabetic ulcer. We hypothesized that VT administration would defend endothelial barrier function against sepsis-associated mediators of permeability, prevent lung vascular leakage arising in endotoxemia, and improve mortality in endotoxemic mice. In confluent human microvascular endothelial cells, VT prevented endotoxin-induced (lipopolysaccharides, LPS O111:B4) gap formation, loss of monolayer resistance, and translocation of labeled albumin. In 8-wk-old male C57Bl6/J mice given a ∼70% lethal dose of endotoxin (15 mg/kg ip), VT prevented lung vascular leakage and reversed the attenuation of lung vascular endothelial cadherin induced by endotoxemia. These protective effects of VT were associated with activation of Tie-2 and its downstream mediator, Akt. Echocardiographic studies showed only a nonsignificant trend toward improved myocardial performance associated with VT. Finally, we evaluated survival in this mouse model. Pretreatment with VT improved survival by 41.4% (n = 15/group, P = 0.02) and post-LPS administration of VT improved survival by 33.3% (n = 15/group, P = 0.051). VT-mediated protection from LPS lethality was lost in Tie-2 heterozygous mice, in agreement with VT's proposed receptor specificity. We conclude that this synthetic Tie-2 agonist, completely unrelated to endogenous Tie-2 ligands, is sufficient to activate the receptor and its downstream pathways in vivo and that the Tie-2 receptor may be an important target for therapeutic evaluation in conditions of pathological vascular leakage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.