In rod outer segments, photoexcited rhodopsin (R*) activates a cyclic GMP phosphodiesterase through a sequence of reactions involving a GTP-binding protein. By measuring light-scattering changes above 700 nm, we have studied the kinetics and stoichiometry of the association of R* with this protein and of the dissociation of the complex upon GDP/GTP exchange. Two light-scattering signals were obtained upon photoexcitation of rhodopsin in bovine rod outer segment membranes as well as in a reconstituted system consisting of purified GTP-binding protein and washed disc membranes; both signals depended specifically on the presence of GTP-binding protein. A "binding signal" that was observed in the absence of gTP as an increase in turbidity became saturated when a number of rhodopsin molecules equal to the number of GTP-binding protein molecules present (congruent to 10% in rod outer segments) has been bleached, suggesting that the protein binds to R* in a 1:1 complex. A "dissociation signal" of opposite sign, observed in presence of GTP at greater than or equal to 1 microM, is half maximal at 0.04% bleaching and saturated at 0.5% bleaching; it is interpreted as reflecting the dissociation of GTP-binding protein-R* complexes after GDP/GTP exchange on the GTP-binding protein, one R* being able to interact sequentially with about 100 GTP-binding protein molecules. The early time course of the binding signal is faster than that of the dissociation signal, and both signals take place in the 100-msec range at 20 degrees C.
The inactivation of excited rhodopsin in the presence of ATP, rhodopsin kinase, and/or arrestin has been studied from its effect on the two subsequent steps in the light-induced enzymatic cascade: metarhodopsin II catalyzed activation of G-protein and G-protein-dependent activation of cGMP phosphodiesterase. The inactivation of G-protein (from light-scattering measurements) and that of phosphodiesterase (from measurements of cGMP hydrolysis) have been studied and compared in reconstituted systems containing various combinations of the proteins involved (rhodopsin, G-protein, phosphodiesterase, kinase, and arrestin). Our results show that rhodopsin kinase alone can terminate the activation of G-protein and that arrestin speeds up the process at a relative concentration similar to that reported in the rod (half-maximal effect at 50 nM for 4.4 microM rhodopsin). Measurements of rhodopsin phosphorylation under identical conditions show that in the presence of arrestin total metarhodopsin II inactivation is achieved when only 0.5-1.4 phosphates are bound per bleached rhodopsin, whereas in the absence of arrestin it requires binding of 12-16 phosphates per bleached rhodopsin. Phosphodiesterase activity can similarly be turned off by kinase, and the process is similarly accelerated by arrestin.
Specialized eukaryotic cells can ingest large particles and sequester them within membrane-delimited phagosomes. Many studies have described the delivery of lysosomal proteins to the phagosome, but little is known about membrane sorting during the early stages of phagosome formation. Here we used Dictyostelium discoideum amoebae to analyze the membrane composition of newly formed phagosomes. The membrane delimiting the closing phagocytic cup was essentially derived from the plasma membrane, but a subgroup of proteins was specifically excluded. Interestingly the same phenomenon was observed during the formation of macropinosomes, suggesting that the same sorting mechanisms are at play during phagocytosis and macropinocytosis. Analysis of mutant strains revealed that clathrin-associated adaptor complexes AP-1, -2 and -3 were not necessary for this selective exclusion and, accordingly, ultrastructural analysis revealed no evidence for vesicular transport around phagocytic cups. Our results suggest the existence of a new, as yet uncharacterized, sorting mechanism in phagocytic and macropinocytic cups
We have previously described [H. Kuhn et al. (1981) Proc. Nut1 Acud. Sci. USA, 78,6873 -68771 a light-induced scattering change ('binding signal') associated with a stoichiometric binding between photoexcited rhodopsin and a peripheral membrane protein, the GTP-binding protein, in bovine rod outer segment suspensions. We have attempted here to identify the rhodopsin intermediate R* which is responsible for this interaction, by studying its dependence on pH, temperature and ionic strength. The results strongly suggest that the active state is metarhodopsin 11 (M 11).1. The initial phase of the binding signal is slightly slower than the formation of metarhodopsin I1 (2 -37 "C, pH 5.5 -9).2. The kinetics of the decay of the active rhodopsin state are similar to those of the metarhodopsin I1 -+ metarhodopsin I11 transition (37 "C, pH 7.3).3. All conditions which lead to light-induced binding of the GTP-binding protein to R* also lead to the formation of M 11. At 2"C, pH 8.3, in particular where no M I1 is formed in the absence of GTP-binding protein, binding signals and light-induced attachment of the GTP-binding protein to the membrane are still observed. Consistently, addition of GTP-binding protein to a suspension of extracted membranes bleached at 2 "C (pH 8.3) shifts the metarhodopsin I + metarhodopsin I1 equilibrium towards metarhodopsin 11. The shift is reversed by GTP, which dissociates the rhodopsin -GTP-binding protein complex.4. At low ionic strength, where the GTP-binding protein is soluble in the dark (instead of being associated to the membrane as in the above experiments) MI1 still induces the binding whereas M I does not, indicating a much lower affinity of the GTP-binding protein for MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.