Thermal stress in living cells produces multiple changes that ultimately affect membrane structure and function. We report that two members of the family of small heat-shock proteins (sHsp) (␣-crystallin and Synechocystis HSP17) have stabilizing effects on model membranes formed of synthetic and cyanobacterial lipids. In anionic membranes of dimyristoylphosphatidylglycerol and dimyristoylphosphatidylserine, both HSP17 and ␣-crystallin strongly stabilize the liquid-crystalline state. Evidence from infrared spectroscopy indicates that lipid͞sHsp interactions are mediated by the polar headgroup region and that the proteins strongly affect the hydrophobic core. In membranes composed of the nonbilayer lipid dielaidoylphosphatidylethanolamine, both HSP17 and ␣-crystallin inhibit the formation of inverted hexagonal structure and stabilize the bilayer liquid-crystalline state, suggesting that sHsps can modulate membrane lipid polymorphism. In membranes composed of monogalactosyldiacylglycerol and phosphatidylglycerol (both enriched with unsaturated fatty acids) isolated from Synechocystis thylakoids, HSP17 and ␣-crystallin increase the molecular order in the fluid-like state. The data show that the nature of sHsp͞membrane interactions depends on the lipid composition and extent of lipid unsaturation, and that sHsps can regulate membrane fluidity. We infer from these results that the association between sHsps and membranes may constitute a general mechanism that preserves membrane integrity during thermal fluctuations.
In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination of spectroscopy and microscopy techniques to test the prevailing notion that the main phosphatidyl choline (PC) and lipopolymer species are completely miscible within the monolayer shell. NMR spectroscopy showed that the shell composition is roughly equivalent to the bulk lipid ratio. FTIR spectroscopy showed a sharp melting peak corresponding to the main phase-transition temperature of the main PC species, with no observed pretransitions while scanning from room temperature, indicating a single PC-rich ordered phase. Electron and fluorescence microscopy showed a heterogeneous microstructure with dark (ordered) domains and bright (disordered) regions. Domain formation was thermotropic and reversible. Fluorescent labeling of the lipopolymer following shell formation showed that it partitions preferentially into the disordered interdomain regions. The ordered domains, therefore, are composed primarily of PC, and the disordered interdomain regions are enriched in lipopolymer. Phase heterogeneity was observed at all lipopolymer concentrations (0.5 to 20 mol %), and the degree of phase separation increased with lipopolymer content. The composition and temperature dependence of the microstructure indicates that phase separation is driven thermodynamically rather than being a kinetically trapped relic of the shell-formation process. The overall high variation in microstructure, including the existence of anomalous three-phase coexistence, highlights the nonequilibrium (history-dependent) nature of the monolayer shell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.