A microtiter plate adaptation of the well-known dinitrosalicylic acid (DNS) colorimetric method, for measurement of reducing sugars, is described. This method allows a substantial volume reduction of the reagents and a rapid analysis of a large number of samples, having an economic cost benefit and a positive impact on the environment. Therefore, it is well suited as an high-throughput technique for reducing sugars determination.
The consumers' demand for natural flavour and fragrances rises. To be natural, compounds have to result from the extraction of natural materials and/or to be transformed by natural means such as the use of enzymes or whole cells. Fungi are able to transform some fatty acids into lactones that can thus be natural. Although some parts of this subject have been reviewed several times, the present article proposes to review the different pathways utilised, the metabolic engineering strategies and some current concerns on the reactor application of the transformation including scaling up data. The main enzymatic steps are hydroxylation and β-oxidation in the traditional way, and lactone desaturation or Baeyer-Villiger oxidation. Although the pathway to produce γ-decalactone is rather well known, metabolic engineering strategies may result in significant improvements in the productivity. For the production of other lactones, a key step is the hydroxylation of fatty acids. Beside the biotransformation, increasing the production of the various lactones requires from biotechnologists to solve two main problems which are the toxicity of lactones toward the producing cell and the aeration of the emulsified reactor as the biochemical pathway is very sensitive to the level of available oxygen. The strategies employed to resolve these problems will be presented.
Aims: To study the cellular growth and morphology of Yarrowia lipolytica W29 and its lipase and protease production under increased air pressures. Methods and Results: Batch cultures of the yeast were conducted in a pressurized bioreactor at 4 and 8 bar of air pressure and the cellular behaviour was compared with cultures at atmospheric pressure. No inhibition of cellular growth was observed by the increase of pressure. Moreover, the improvement of the oxygen transfer rate (OTR) from the gas to the culture medium by pressurization enhanced the extracellular lipase activity from 96·6 U l−1 at 1 bar to 533·5 U l−1 at 8 bar. The extracellular protease activity was reduced by the air pressure increase, thereby eliciting further lipase productivity. Cell morphology was slightly affected by pressure, particularly at 8 bar, where cells kept the predominant oval form but decreased in size. Conclusions: OTR improvement by total air pressure rise up to 8 bar in a bioreactor can be applied to the enhancement of lipase production by Y. lipolytica. Significance and Impact of the Study: Hyperbaric bioreactors can be successfully applied for yeast cells cultivation, particularly in high‐density cultures used for enzymes production, preventing oxygen limitation and consequently increasing overall productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.