BACKGROUND-Case studies have suggested the efficacy of catheter-free, electrophysiologyguided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy (SBRT), though prospective data is lacking. METHODS-We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electrical cardiac imaging with a standard SBRT workflow followed by delivery of a single fraction of 25 Gray (Gy) to the target. The primary safety endpoint was treatment-related serious adverse events (SAE) in the first 90 days. The primary efficacy endpoint was any reduction in VT episodes (tracked by indwelling ICDs) or any reduction in PVC burden
Data from computed tomography (CT) scans of 12 twin pairs in which one partner had Azheimer’s disease (AD) and the other partner is cognitively intact were analyzed to study structural brain features associated with AD while controlling for familial factors. Visual ratings and analysis of quantified areas and volumes indicated that AD twins showed more dilation of temporal horns, lateral ventricles and third ventricle, and more atrophy of temporal lobes, particularly in the anterior temporal/perisylvian area, than their healthy cotwins. Demented twins did not have smaller intracranial areas or overall brain volumes than their intact partners. The apolipoprotein σ-4 allele was associated with greater dilation of lateral ventricles and ventricular volume. Significant intrapair correlations were found for total intracranial area and volume, cerebellar area and white matter lesions.
In this manuscript, the authors detail the complete workflow for cardiac stereotactic body radiation therapy that was performed to treat patients with refractory ventricular tachycardia on a recently completed phase 1/2 trial. Included in this report are the dose-volume metrics Purpose: A prospective phase 1/2 trial for electrophysiologic guided noninvasive cardiac radioablation treatment of ventricular tachycardia (ENCORE-VT) demonstrating efficacy for arrhythmia control has recently been reported. The treatment workflow, report dose-volume metrics, and overall process improvements are described here. Methods and Materials: Patients receiving 25 Gy in a single fraction to the cardiac ventricular tachycardia substrate (identified on presimulation multimodality imaging) on the phase 1/2 trial were included for analysis. Planning target volume (PTV), R50, monitor unit ratio, and gradient measure values were compared over time using statistical process control. Outlier values in the dose-volume histogram (DVH) for PTV and organs at risk were identified by calculating inner fences based on the interquartile range. Median heart substructure doses are also reported.
It has been recently shown that radiotherapy at ultrahigh dose rates (>40 Gy/s, FLASH) has a potential advantage in sparing healthy organs compared to that at conventional dose rates. The purpose of this work is to show the feasibility of proton FLASH irradiation using a gantry-mounted synchrocyclotron as a first step toward implementing an experimental setup for preclinical studies. Methods: A clinical Mevion HYPERSCAN â synchrocyclotron was modified to deliver ultrahigh dose rates. Pulse widths of protons with 230 MeV energy were manipulated from 1 to 20 ls to deliver in conventional and ultrahigh dose rate. A boron carbide absorber was placed in the beam for range modulation. A Faraday cup was used to determine the number of protons per pulse at various dose rates. Dose rate was determined by the dose measured with a plane-parallel ionization chamber with respect to the actual delivery time. The integral depth dose (IDD) was measured with a Bragg ionization chamber. Monte Carlo simulation was performed in TOPAS as the secondary check for the measurements. Results: Maximum protons charge per pulse, measured with the Faraday cup, was 54.6 pC at 20 ls pulse width. The measured IDD agreed well with the Monte Carlo simulation. The average dose rate measured using the ionization chamber showed 101 Gy/s at the entrance and 216 Gy/s at the Bragg peak with a full width at half maximum field size of 1.2 cm. Conclusions: It is feasible to deliver protons at 100 and 200 Gy/s average dose rate at the plateau and the Bragg peak, respectively, in a small~1 cm 2 field using a gantry-mounted synchrocyclotron.
The purpose of this study is to describe the comprehensive commissioning process and initial clinical experience of the Mevion S250 proton therapy system, a gantry‐mounted, single‐room proton therapy platform clinically implemented in the S. Lee Kling Proton Therapy Center at Barnes‐Jewish Hospital in St. Louis, MO, USA. The Mevion S250 system integrates a compact synchrocyclotron with a C‐inner gantry, an image guidance system and a 6D robotic couch into a beam delivery platform. We present our commissioning process and initial clinical experience, including i) CT calibration; ii) beam data acquisition and machine characteristics; iii) dosimetric commissioning of the treatment planning system; iv) validation through the Imaging and Radiation Oncology Core credentialing process, including irradiations on the spine, prostate, brain, and lung phantoms; v) evaluation of localization accuracy of the image guidance system; and vi) initial clinical experience. Clinically, the system operates well and has provided an excellent platform for the treatment of diseases with protons.PACS number(s): 87.55.ne, 87.56.bd
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.