This paper analyzes stochastic networks consisting of a set of finite capacity sites where different classes of individuals move according to some routing policy. The associated Markov jump processes are analyzed under a thermodynamic limit regime, that is, when the networks have some symmetry properties and when the number of nodes goes to infinity. An intriguing stability property is proved: under some conditions on the parameters, it is shown that, in the limit, several stable equilibrium points coexist for the empirical distribution. The key ingredient of the proof of this property is a dimension reduction achieved by the introduction of two energy functions and a convenient mapping of their local minima and saddle points. Networks with a unique equilibrium point are also presented.Comment: Published in at http://dx.doi.org/10.1214/009117907000000105 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
This paper analyzes stochastic networks consisting of finite capacity nodes with different classes of requests which move according to some routing policy. The Markov processes describing these networks do not, in general, have reversibility properties, so the explicit expression of their invariant distribution is not known. Kelly's limiting regime is considered: the arrival rates of calls as well as the capacities of the nodes are proportional to a factor going to infinity. It is proved that, in limit, the associated rescaled Markov process converges to a deterministic dynamical system with a unique equilibrium point characterized by a nonstandard fixed point equation.Comment: Published at http://dx.doi.org/10.1214/105051606000000466 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
We study in this paper the integration of elastic and streaming traffic on a same link in an IP network. We are specifically interested in the computation of the mean bit rate obtained by a data transfer. For this purpose, we consider that the bit rate offered by streaming traffic is low, of the order of magnitude of a small parameter ε ≪ 1 and related to an auxiliary stationary Markovian process (X(t)). Under the assumption that data transfers are exponentially distributed, arrive according to a Poisson process, and share the available bandwidth according to the ideal processor sharing discipline, we derive the mean bit rate of a data transfer as a power series expansion in ε. Since the system can be described by means of an M/M/1 queue with a time-varying server rate, which depends upon the parameter ε and process (X(t)), the key issue is to compute an expansion of the area swept under the occupation process of this queue in a busy period. We obtain closed formulas for the power series expansion in ε of the mean bit rate, which allow us to verify the validity of the so-called reduced service rate at the first order. The second order term yields more insight into the negative impact of the variability of streaming flows.
Abstract. Motivated by the problem of the coexistence on transmission links of telecommunication networks of elastic and unresponsive traffic, we study in this paper the impact on the busy period of an M/M/1 queue of a small perturbation in the server rate. The perturbation depends upon an independent stationary process (X(t)) and is quantified by means of a parameter ε ≪ 1. We specifically compute the two first terms of the power series expansion in ε of the mean value of the busy period duration. This allows us to study the validity of the Reduced Service Rate (RSR) approximation, which consists in comparing the perturbed M/M/1 queue with the M/M/1 queue where the service rate is constant and equal to the mean value of the perturbation. For the first term of the expansion, the two systems are equivalent. For the second term, the situation is more complex and it is shown that the correlations of the environment process (X(t)) play a key role.
As passive optical networks (PON) are increasingly deployed to provide high speed Internet access, it is important to understand their fundamental traffic capacity limits. The paper discusses performance models applicable to wavelength division multiplexing (WDM) EPONs and GPONs under the assumption that users access the fibre via optical network units equipped with tunable transmitters. The considered stochastic models are based on multiserver polling systems for which explicit analytical results are not known. A large system asymptotic, mean-field approximation is used to derive closed form solutions of these complex systems. Convergence of the mean field dynamics is proved in the case of a simple network configuration. Simulation results show that, for a realistic sized PON, the mean field approximation is accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.