Standard models of exchange rates, based on macroeconomic variables such as prices, interest rates, output, etc., are thought by many researchers to have failed empirically. We present evidence to the contrary. First, we emphasize the point that "beating a random walk" in forecasting is too strong a criterion for accepting an exchange rate model. Typically models should have low forecasting power of this type. We then propose a number of alternative ways to evaluate models. We examine in-sample fit, but emphasize the importance of the monetary policy rule, and its effects on expectations, in determining exchange rates. Next we present evidence that exchange rates incorporate news about future macroeconomic fundamentals, as the models imply. We demonstrate that the models might well be able to account for observed exchange-rate volatility. We discuss studies that examine the response of exchange rates to announcements of economic data. Then we present estimates of exchange-rate models in which expected present values of fundamentals are calculated from survey forecasts. Finally, we show that out-of-sample forecasting power of models can be increased by focusing on panel estimation and long-horizon forecasts.
We study the panel DOLS estimator of a homogeneous cointegration vector for a balanced panel of N individuals observed over T time periods. Allowable heterogeneity across individuals include individual-specific time trends, individual-specific fixed effects and time-specific effects. The estimator is fully parametric, computationally convenient, and more precise than the single equation estimator. For fixed N as T approaches infinity, the estimator converges to a function of Brownian motions and the Wald statistic for testing a set of linear constraints has a limiting chi-square distribution. The estimator also has a Gaussian sequential limit distribution that is obtained first by letting T go to infinity then letting N go to infinity. In a series of Monte Carlo experiments, we find that the asymptotic distribution theory provides a reasonably close approximation to the exact finite sample distribution. We use panel dynamic OLS to estimate coefficients of the long-run money demand function from a panel of 19 countries with annual observations that span from 1957 to 1996. The estimated income elasticity is 1.08 (asymptotic s.e.=0.26) and the estimated interest rate semi-elasticity is-0.02 (asymptotic s.e.=0.01).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.