Parkinson's disease (PD) and aging lead to gait impairments. Some of the disturbances of gait are focused on step length, cadence, and temporal variability of gait cycle. Under experimental conditions gait can be overtly evaluated, but patients with PD are prone to expectancy effects; thus it seems relevant to determine if such evaluation truly reflects the spontaneous gait pattern in such patients, and also in healthy subjects. Thirty subjects (15 subjects with PD and 15 healthy control subjects) were asked to walk using their natural, preferred gait pattern. In half of the trials subjects were made aware that they were being evaluated (overt evaluation), while in the rest of the trials the evaluation was performed covertly (covert evaluation). During covert evaluation the gait pattern was modified in all groups. Gait speed was significantly increased (P = .022); step cadence and average step length were also significantly modified, the average step length increased (P = .002) and the cadence was reduced (P ≤ .001). Stride cycle time variability was unchanged significantly (P = .084). These changes were not significantly different compared between elderly and young healthy controls either. Due to the small sample size, a note of caution is in order; however, the significant results suggest that covert evaluation of gait might be considered to complement experimental evaluations of gait.
The neural substrates of fatigue induced by muscular activity have been addressed in depth in relation to isometric tasks. For these activities, when fatigue develops, it has been noted that the duration of the silent periods (SPs) increases in response to both transcranial magnetic stimulation (TMS) of primary motor cortex or electric cervicomedullary stimulation (CMS). However, fatigue is known to be task-dependent and the mechanisms giving rise to a decrease in motor performance during brief, fast repetitive tasks have been less studied. We hypothesized that fatigue induced by repetitive fast finger tapping may have physiological mechanisms different from those accounting for fatigue during an isometric contraction, even in cases of matched effort durations. In these tasks, we examined the contribution of spinal and supraspinal motor circuits to the production of fatigue. The tapping rate and maximal voluntary contractions (MVC), and TMS- and CMS-evoked SPs were obtained at the time of fatigue, and while subjects maintained maximal muscle activation after fast finger-tapping (or isometric activity) of different durations (10 or 30s). Results showed different mechanisms of fatigue triggered by isometric contraction and repetitive movements, even of short duration. Short-lasting repetitive movements induce fatigue within intracortical inhibitory circuits. They increased TMS-SPs, but not CMS-SPs. On the other hand, isometric contraction had a clear impact on spinal circuits. The consideration of these differences might help to optimize the study of fatigue in physiological conditions and neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.