Computed tomography (CT)-guided percutaneous drilling is an alternative for osteoid osteoma treatment. This study aims to evaluate the remodeling of the drill orifice. The success rate and complications were also recorded and compared with other treatment methods.Fifteen patients with an average age of fourteen years (ranging from 4 to 25) submitted to CT-guided percutaneous drilling between 2003 and 2009 were retrospectively analyzed according to clinical and radiological criteria.Fourteen cases showed complete alleviation of pain one week after surgery. No relapse was detected even in the subject who continued complaining of pain. All patients were treated with a day-hospital regimen and were discharged with partial weight bearing. Total weight bearing was allowed after one month, and sports were allowed after consolidation, which occurred in all but one case after the third month. One patient, who did not follow our medical advice, returned to sports activities after two weeks and experienced a fracture as a result. Atrophy of the vastus lateralis muscle developed after the procedure in another patient.Our case series suggests that this method is reliable and safe. The level of complexity is comparable with other minimally invasive percutaneous procedures. The cost is low because there is no need to buy probes or other equipment. The negative points include weakening of the bone and the logistical problem of assembling the orthopedic surgeon, radiologist, and anesthesiologist in the tomography room.
Over the last decade, the rho-associated kinases and several metastasis-associated microRNAs have emerged as important contributors of tumor invasion. However, despite prominence, our understanding of their involvement in the metastatic potential of Ewing Sarcoma (EWS) is incomplete. The expression profiles of ROCK1 or ROCK2 and miR-124-3p, miR-138-5p, miR-139-5p, miR-335-5p and miR-584-5p (all of which were previously predicted or validated to regulate these kinases) were evaluated through qRT-PCR and associated with clinical parameters. In vitro assays to evaluate colony formation and invasion/migration capacieties were performed on SK-ES-1 cells transfected with pre-miR mimics. ROCK1 expression was significantly reduced in EWS tissues, though there was no association with pathological parameters. miR-124-3p, miR-139-5p and miR-335-3p were also found significantly downregulated and positively correlated with ROCK1. Stratification indicated an association between lower levels of miR-139-5p and miR-584-5p with disease progression (p < 0.05), while reduced expression of the former and miR-124-3p were associated with reduced survival. In vitro miR-139-5p overexpression yielded inconsistent results: while mir-139-5p restoration significantly reduced invasion, the clonogenic capacity of cells was increased. Our study demonstrated that down-regulation of miR-124-3p, miR-139-5p and miR-584-5p are associated with disease progression in EWS and may serve as a risk assessment biomarkers though, as seen for mir-139-5p, their specific role remain to be elucidated for considering tailoring treatment options.
Biomaterials’ structural characteristics and the addition of osteoinductors influence the osteointegration capacity of bone substitutes. This study aims to identify the characteristics of porous and resorbable bone substitutes that influence new bone formation. An Internet search for studies reporting new bone formation rates in bone defects filled with porous and resorbable substitutes was performed in duplicate using the PubMed, Web of Science, Scielo, and University of São Paulo Digital Library databases. Metaphyseal or calvarial bone defects 4 to 10 mm in diameter from various animal models were selected. New bone formation rates were collected from the histomorphometry or micro-CT data. The following variables were analyzed: animal model, bone region, defect diameter, follow-up time after implantation, basic substitute material, osteoinductor addition, pore size and porosity. Of 3,266 initially identified articles, 15 articles describing 32 experimental groups met the inclusion criteria. There were no differences between the groups in the experimental model characteristics, except for the follow-up time, which showed a very weak to moderate correlation with the rate of new bone formation. In terms of the biomaterial and structural characteristics, only porosity showed a significant influence on the rate of new bone formation. Higher porosity is related to higher new bone formation rates. The influence of other characteristics could not be identified, possibly due to the large variety of experimental models and methodologies used to estimate new bone formation rates. We suggest the inclusion of standard control groups in future experimental studies to compare biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.