BackgroundControl and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance.Methodology/Principal FindingsLarval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06–0.074), approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11.Conclusions/SignificanceIn Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest control efficacy while minimizing further selection of resistant phenotypes.
BackgroundGuidelines from the World Health Organization for monitoring insecticide resistance in disease vectors recommend exposing insects to a predetermined discriminating dose of insecticide and recording the percentage mortality in the population. This standardized methodology has been widely adopted for malaria vectors and has provided valuable data on the spread and prevalence of resistance. However, understanding the potential impact of this resistance on malaria control requires a more quantitative measure of the strength or intensity of this resistance.MethodsBioassays were adapted to quantify the level of resistance to permethrin in laboratory colonies and field populations of Anopheles gambiae sensu lato. WHO susceptibility tube assays were used to produce data on mortality versus exposure time and CDC bottle bioassays were used to generate dose response data sets. A modified version of the CDC bottle bioassay, known as the Resistance Intensity Rapid Diagnostic Test (I-RDT), was also used to measure the knockdown and mortality after exposure to different multipliers of the diagnostic dose. Finally cone bioassays were used to assess mortality after exposure to insecticide treated nets.ResultsThe time response assays were simple to perform but not suitable for highly resistant populations. After initial problems with stability of insecticide and bottle washing were resolved, the CDC bottle bioassay provided a reproducible, quantitative measure of resistance but there were challenges performing this under field conditions. The I-RDT was simple to perform and interpret although the end point selected (immediate knockdown versus 24 h mortality) could dramatically affect the interpretation of the data. The utility of the cone bioassays was dependent on net type and thus appropriate controls are needed to interpret the operational significance of these data sets.ConclusionsIncorporating quantitative measures of resistance strength, and utilizing bioassays with field doses of insecticides, will help interpret the possible impact of resistance on vector control activities. Each method tested had different benefits and challenges and agreement on a common methodology would be beneficial so that data are generated in a standardized format. This type of quantitative data are an important prerequisite to linking resistance strength to epidemiological outcomes.
Pyrethroid resistance is widespread in the malaria vector Anopheles gambiae leading to concerns about the future efficacy of bednets with pyrethroids as the sole active ingredient. The incorporation of pyriproxyfen (PPF), a juvenile hormone analogue, into pyrethroid treated bednets is being trialed in Africa. Pyrethroid resistance is commonly associated with elevated levels of P450 expression including CYPs 6M2, 6P2, 6P3, 6P4, 6P5, 6Z2 and 9J5. Having expressed these P450s in E. coli we find all are capable of metabolizing PPF. Inhibition of these P450s by permethrin, deltamethrin and PPF was also examined. Deltamethrin and permethrin were moderate inhibitors (IC 1-10 μM) of diethoxyfluorescein (DEF) activity for all P450s apart from CYP6Z2 (IC > 10 μM), while PPF displayed weaker inhibition of all P450s (IC > 10 μM) except CYP's 6Z2 and 6P2 (IC 1-10 μM). We found evidence of low levels of cross resistance between PPF and other insecticide classes by comparing the efficacy of PPF in inhibiting metamorphosis and inducing female sterility in an insecticide susceptible strain of An. gambiae and a multiple resistant strain from Cote d'Ivoire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.