Non-Hodgkin B-cell lymphomas (B-NHL) mainly develop within lymph nodes (LN) as densely packed aggregates of tumor cells and their surrounding microenvironment, creating a tumor niche specific to each lymphoma subtypes. In vitro preclinical models mimicking biomechanical forces, cellular microenvironment, and 3D organization of B-cell lymphomas remain scarce, while all these parameters constitute key determinants of lymphomagenesis and drug resistance. Using a microfluidic method based on cell encapsulation inside permeable, elastic, and hollow alginate microspheres, we developed a new tunable 3D-model incorporating lymphoma B cells, extracellular matrix (ECM), and/or tonsil stromal cells (TSC). We revealed that under 3D confinement lymphoma B cells were able to form cohesive spheroids resulting from overexpression of ECM components. Moreover, lymphoma B cells and TSC dynamically formed self-organized 3D spheroids favoring spheroid growth. 3D culture induced resistance to classical chemotherapeutic agent doxorubicin, but not to BCL2 inhibitor ABT-199, identifying this approach as a relevant in vitro model to assess the activity of therapeutic agents in B-NHL. RNAseq analysis highlighted the synergy of 3D, ECM, and TSC in upregulating similar pathways in malignant B cells in vitro than those overexpressed in primary lymphoma cells in situ. Finally, our 3D model including ECM and TSC allowed long-term in vitro survival of primary follicular lymphoma B cells. In conclusion, we propose a new high throughput 3D model mimicking lymphoma tumor niche and making it possible to study the dynamic relationship between lymphoma B cells and their microenvironment and to screen new anti-cancer drugs.
Non-Hodgkin B-cell lymphomas (B-NHL) mainly develop within lymph nodes as densely packed aggregates of tumor cells and their surrounding microenvironment, creating a tumor niche specific to each lymphoma subtypes. Until now, in vitro preclinical models mimicking biomechanical forces, cellular microenvironment, and 3D organization of B lymphomas remain scarce while all these parameters constitute key determinants of lymphomagenesis and drug resistance. Using a microfluidic method based on the encapsulation of cells inside permeable, elastic, and hollow alginate microspheres, we developed a new tunable 3D-model incorporating extracellular matrix and/or stromal cells. Lymphoma B cells and stromal cells dynamically formed self-organized 3D spheroids, thus initiating a coevolution of these two cell types, reflecting their bidirectional crosstalk, and recapitulating the heterogeneity of B-NHL subtypes. In addition, this approach makes it suitable to assess in a relevant in vitro model the activity of new therapeutic agents in B-NHL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.