The aim of this work was to perform thermal characterization of commercially pure titanium in dry air to determine its oxidation kinetics and the structure of the oxide. The oxidation kinetics were determined thermogravimetrically under isothermal conditions in the temperature range 300 to 750 ºC for 48 hours and the structure of the oxides was determined by differential thermal analyses and X-ray diffraction in the temperature range room temperature - 1000ºC. The oxidation rate of titanium increased with increase in temperature. It was high in the initial stages of oxidation and then decreased rapidly with time, especially up to 600 ºC. The kinetic laws varied between inverse logarithmic at the lower temperatures (300 and 400 ºC) and parabolic at the higher temperatures (650, 700 and 750 ºC). Evidences from X-ray diffraction and differential thermal analyses data revealed that the passive oxide film formed at room temperature crystallized into anatase at about 276 ºC. The crystallized oxide formed in the range 276 - 457 ºC consisted of anatase, in the range 457 - 718 ºC consisted of anatase and rutile sublayers, and at temperatures beyond 718 ºC consisted of a layer of pure rutile. Scanning electron microscopy observations reveled that the oxidized surfaces were crack-free and the surface roughness increased steadily with oxidation temperature.
Titanium-based composites with in-situ calcium and phosphor phases were prepared by powder metallurgy processing with titanium and hydroxyapatite (HA) powders. The mixtures were performed in a friction mill with alcohol for 5 hours, dried in a rotating evaporator, pressed at 600 MPa and sintered at 1200 °C for 2 hours in argon atmosphere. Crystal phases of the as-fabricated composite are found to be, α-Ti, CaTiO 3 , Ca 3 (PO 4 ) 2 and Ti x P y phase(s). The analyses revealed that titanium particles were covered with a compact layer of Ti x P y and CaTiO 3 phases, which resulted from the decomposition of HA into CaTiO 3 and β-Ca 3 (PO 4 ) 2 at approximately 1025 °C. Then the reactions were followed by the decomposition of β-Ca 3 (PO 4 ) 2 , resulting in the growth of CaTiO 3 layer and in the nucleation and growth of Ti x P y phase(s).
Bone replacement is often required in veterinary clinics and hospitals routine, even because fractures, bone tumors or any orthopedic disease that entail in bone loss. In this sense, biomaterials capable of promoting this substitution, avoiding the use of bone grafts or transplants have been searched. The aim of this study was evaluated the osteoregenerative capacity of biomaterials in different compositions, implanted in sheep's tibia. Eight female, mongrel sheeps, 12 months old, weighting 28,5±7,4kg were obtained for this study. Three bone defects, 6mm each, in both tibias, a total of six bone defects, were produced, being four of them treated with four different types of biomaterials and two with autogenous bone grafts, as a control group. The biomaterials implanted were: hydroxyapatite (HA), beta-tricalcium phosphate (TCP-β), hydroxyapatite/beta-tricalcium phosphate 60:40 (HA/TCP-β 60:40) and the nanocomposite hydroxyapatite and alumina (HA/Al 2 O 3 5%). The animals were allocated in two groups: Group 60 (n=04), in which the animals were euthanized sixty days after the implantation of the biomaterials and Group 90 (n=04), in which the animals were euthanized ninety days after the procedure. Were performed radiograph images on the preoperative period, immediate postoperative and at 30, 60 and 90 days of postoperative period, to excluded any previously disease or postoperative complications that could compromise this research. After euthanasia, the tibias were collected for macro and microscopic evaluation, which was accessed by scanning electron microscopy (SEM) and optic microscopy. The results suggest that HA, TCP-β and HA/TCP-β present a great osteoregenerative capacity. The last one seems to be better for a long-term outcome, due its best control in the solubilization and releasing of calcium and phosphates ions through the biological environment during bone formation. The nanocomposite HA/Al 2 O 3 5% didn't show a good response on this study, and we suggest new researches to better evaluate the potential and applicability of this new biomaterial. We concluded that HA, TCP-β and HA/TCP-β 60:40 presented excellent capacity of bone repair, and could be used as bone substituts; the association HA/TCP-β (60:40) is superior due his intermediary velocity of absortion comparing to HA and TCP-β isolated, providing adequate supporting to the neoformed tissue; the HA/Al 2 O 3 5% showed incompatibility, 1 Recebido em 26 de junho de 2014.Aceito para publicação em 21 de dezembro de 2014.
This study was developed based on in vivo investigation of microporous granular biomaterials based on calcium phosphates, involving matrices of β-tricalcium phosphate (β-TCP), hydroxyapatite (HA), biphasic compositions of both phases and a control group. The physicochemical characterization of materials was carried out by X-Ray diffraction (DRX) and mercury porosimetry. Biodegradability, bioactivity and neoformation processes were investigated by Raman spectroscopy, scanning electron microscopy (SEM) and polarized light conducted on biopsies obtained from in vivo tests for periods of 90 and 180 days. These were performed to evaluate the behavior of granular microporous compositions in relation to bone neoformation. Through the performance obtained from in vivo assays, excellent osseointegration and bone tissue neoformation were observed. The results are encouraging and show that the microporous granular biomaterials of HA, β-TCP and biphasic compositions show similar results with perfect osseointegration. Architectures simulating a bone structure can make the difference between biomaterials for bone tissue replacement and repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.