While Answer-Set Programming (ASP) is a prominent approach to declarative problem solving, optimisation problems can still be a challenge for it. Large-Neighbourhood Search (LNS) is a metaheuristic for optimisation where parts of a solution are alternately destroyed and reconstructed that has high but untapped potential for ASP solving. We present a framework for LNS optimisation in answer-set solving, in which neighbourhoods can be specified either declaratively as part of the ASP encoding, or automatically generated by code. To effectively explore different neighbourhoods, we focus on multi-shot solving as it allows to avoid program regrounding. We illustrate the framework on different optimisation problems, some of which are notoriously difficult, including shift planning and a parallel machine scheduling problem from semi-conductor production which demonstrate the effectiveness of the LNS approach.
Recent advances in neural-symbolic learning, such as Deep-ProbLog, extend probabilistic logic programs with neural predicates. Like graphical models, these probabilistic logic programs define a probability distribution over possible worlds, for which inference is computationally hard. We propose Deep-StochLog, an alternative neural-symbolic framework based on stochastic definite clause grammars, a kind of stochastic logic program. More specifically, we introduce neural grammar rules into stochastic definite clause grammars to create a framework that can be trained end-to-end. We show that inference and learning in neural stochastic logic programming scale much better than for neural probabilistic logic programs. Furthermore, the experimental evaluation shows that DeepStochLog achieves state-of-the-art results on challenging neural-symbolic learning tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.