SUMMARY Background Umbilical cord blood (UCB) is increasingly considered as an alternative to peripheral blood progenitor cells (PBPC) or bone marrow (BM), especially when a HLA-matched adult unrelated donor is not available. Methods In order to establish the appropriateness of current graft selection practices, we retrospectively compared leukemia-free survival and other outcomes for each graft source in patients aged >16 years transplanted for acute leukemia using Cox regression. Data were available on 1525 patients transplanted between 2002 and 2006 using UCB (n=165), PBPC (n=888) and BM (n=472). UCB units were matched at HLA-A and B at antigen level and DRB1 at allele level (n=10) or mismatched at one (n=40) or two antigens (n=115). PBPC and BM grafts from unrelated adult donors were matched for allele-level HLA-A, B, C and DRB1 (n=632; n=332) or mismatched at one locus (n=256; n=140). Findings Leukemia-free survival after UCB transplantation was comparable to that observed after 8/8 and 7/8 allele-matched PBPC or BM transplantation. Transplant-related mortality, however, was higher after UCB transplantation compared to 8/8 allele-matched PBPC (HR 1.62, p<0.01) or BM (HR 1.69, p<0.01). Grades 2–4 acute and chronic graft-versus-host disease were lower in UCB recipients compared to allele-matched PBPC (HR 0.57, p<0.01 and HR 0.38, p<0.01, respectively), while chronic and not acute graft-versus-host disease was lower after UCB compared to allele-matched BM transplantation (HR 0.63, p=0.01). Interpretation Together, these data support the use of UCB for adults with acute leukemia when an HLA-matched unrelated adult donor is lacking and when transplant is urgently needed.
Aldehyde dehydrogenase (ALDH) is an enzyme that is expressed in the liver and is required for the conversion of retinol (vitamin A) to retinoic acids. ALDH is also highly enriched in hematopoietic stem cells (HSCs) and is considered a selectable marker of human HSCs, although its contribution to stem cell fate remains unknown. In this study, we demonstrate that ALDH is a key regulator of HSC differentiation. Inhibition of ALDH with diethylaminobenzaldehyde (DEAB) delayed the differentiation of human HSCs that otherwise occurred in response to cytokines. Moreover, short-term culture with DEAB caused a 3.4-fold expansion in the most primitive assayable human cells, the nonobese diabetic͞severe combined immunodeficiency mouse repopulating cells, compared with day 0 CD34 ؉ CD38 ؊ lin ؊ cells. The effects of DEAB on HSC differentiation could be reversed by the coadministration of the retinoic acid receptor agonist, all-trans-retinoic acid, suggesting that the ability of ALDH to generate retinoic acids is important in determining HSC fate. DEAB treatment also caused a decrease in retinoic acid receptor-mediated signaling within human HSCs, suggesting directly that inhibition of ALDH promotes HSC self-renewal via reduction of retinoic acid activity. Modulation of ALDH activity and retinoid signaling is a previously unrecognized and effective strategy to amplify human HSCs.retinoic acid ͉ self-renewal ͉ diethylaminobenzaldehyde ͉ long-term repopulating cells H ematopoietic stem cells (HSCs) possess the unique capacity to self-renew and give rise to all mature lymphohematopoietic progeny throughout the lifetime of an individual (1, 2). Several molecular pathways that regulate HSC self-renewal have now been identified, including Notch (3), HOXB4 (4), Wnt (5), and bone morphogenetic protein signaling pathways (6). The osteoblastic niche for HSCs within the bone marrow (BM) has also been characterized (7,8). Despite these advances in understanding HSC biology, clinical methods to amplify human HSCs have yet to be realized, and characterization of the pathways that regulate HSC self-renewal continues to evolve.Two decades ago, Colvin et al. (9,10) demonstrated that the intracellular enzyme, aldehyde dehydrogenase (ALDH), protected BM progenitors from the cytotoxic effects of cyclophosphamide by deactivation of its metabolite, 4-hydroxycyclophosphamide (9, 10). Several isoforms of ALDH have been identified, with ALDH1 being the primary isoform expressed within human hematopoietic progenitors (11,12). Recent studies have shown that human and murine hematopoietic progenitors can be isolated by using a fluorescently labeled dye specific for ALDH activity (13-16) and cord blood (CB) ALDH br lin Ϫ cells are enriched for nonobese diabetic͞severe combined immunodeficiency (NOD͞SCID) mouse repopulating cells [SCID-repopulating cells (SRCs)] (15, 16). Although these data demonstrate that ALDH is a selectable marker for human stem͞progenitor cells, the HSC-specific function of ALDH remains unknown. In the liver, ALDH1 contributes prima...
SUMMARY The gut microbiota influences development 1 – 3 and homeostasis 4 – 7 of the mammalian immune system, and is associated with human inflammatory- 8 and immune diseases 9 , 10 as well as patients’ responses to immunotherapy 11 – 14 . Still, our understanding of how gut bacteria modulate the immune system remains limited, particularly in humans where a lack of deliberate manipulations makes inference challenging. Here we study hundreds of hospitalized—and closely monitored—cancer patients receiving hematopoietic cell transplantation as they recover from chemotherapy and stem cell engraftment. This aggressive treatment causes large shifts in both circulatory immune cell and microbiota populations, allowing the relationships between the two to be studied simultaneously. Analysis of observed daily changes in circulating neutrophil, lymphocyte and monocyte counts and >10,000 longitudinal microbiota samples from patients revealed consistent associations between gut bacteria and immune cell dynamics. High-resolution clinical metadata and Bayesian inference allowed us to compare the effects of bacterial genera relative to those of immunomodulatory medications, revealing a considerable influence of the gut microbiota—in concert and over time—on systemic immune cell dynamics. Our analysis establishes and quantifies the link between the gut microbiota and the human immune system, with implications for microbiota-driven modulation of immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.