Floral chemistry mediates plant interactions with pollinators, pathogens, and herbivores, with major consequences for fitness of both plants and flower visitors. The outcome of such interactions often depends on compound dose and chemical context. However, chemical diversity and intraspecific variation of nectar and pollen secondary chemistry are known for very few species, precluding general statements about their composition. We analyzed methanol extracts of flowers, nectar, and pollen from 31 cultivated and wild plant species, including multiple sites and cultivars, by liquid‐chromatography–mass‐spectrometry. To depict the chemical niche of each tissue type, we analyzed differences in nectar and pollen chemical richness, absolute and proportional concentrations, and intraspecific variability. We hypothesized that pollen would have higher concentrations and more compounds than nectar, consistent with Optimal Defense Theory and pollen's importance as a male gamete. To investigate chemical correlations across and within tissues, which could reflect physiological constraints, we quantified chemical overlap between conspecific nectar and pollen, and phenotypic integration of individual compounds within tissue types. Nectar and pollen were chemically differentiated both across and within species. Of 102 compounds identified, most occurred in only one species. Machine‐learning algorithms assigned samples to the correct species and tissue type with 98.6% accuracy. Consistent with our hypothesis, pollen had 23.8‐ to 235‐fold higher secondary chemical concentrations and 63% higher chemical richness than nectar. The most common secondary compound classes were flavonoids, alkaloids, terpenoids, and phenolics (primarily phenylpropanoids including chlorogenic acid). The most common specific compound types were quercetin and kaempferol glycosides, known to mediate biotic and abiotic effects. Pollens were distinguished from nectar by high concentrations of hydroxycinnamoyl‐spermidine conjugates, which affect plant development, abiotic stress tolerance, and herbivore resistance. Although chemistry was qualitatively consistent within species and tissue types, concentrations varied across cultivars and sites, which could influence pollination, herbivory, and disease in wild and agricultural plants. Analyses of multivariate trait space showed greater overlap across sites and cultivars in nectar than pollen chemistry; this overlap reflected greater within‐site and within‐cultivar variability of nectar. Our analyses suggest different ecological roles of nectar and pollen mediated by chemical concentration, composition, and variability.
Honey bees provide critical pollination services for many agricultural crops. While the contribution of pesticides to current hive loss rates is debated, remarkably little is known regarding the magnitude of risk to bees and mechanisms of exposure during pollination. Here, we show that pesticide risk in recently accumulated beebread was above regulatory agency levels of concern for acute or chronic exposure at 5 and 22 of the 30 apple orchards, respectively, where we placed 120 experimental hives. Landscape context strongly predicted focal crop pollen foraging and total pesticide residues, which were dominated by fungicides. Yet focal crop pollen foraging was a poor predictor of pesticide risk, which was driven primarily by insecticides. Instead, risk was positively related to diversity of non-focal crop pollen sources. Furthermore, over 60% of pesticide risk was attributed to pesticides that were not sprayed during the apple bloom period. These results suggest the majority of pesticide risk to honey bees providing pollination services came from residues in non-focal crop pollen, likely contaminated wildflowers or other sources. We suggest a greater understanding of the specific mechanisms of non-focal crop pesticide exposure is essential for minimizing risk to bees and improving the sustainability of grower pest management programs.
Plants may benefit from limiting the community of generalist floral visitors if the species that remain are more effective pollinators and less effective pollenivores. Plants can reduce access to pollen through altered floral cues or morphological structures, but can also reduce consumption through direct pollen defenses. We observed that Eucera (Peponapis) pruinosa, a specialist bee on Cucurbita plants, collected pure loads of pollen while generalist honey bees and bumble bees collected negligible amounts of cucurbit pollen, even though all groups of bees visited these flowers. Cucurbit flowers have no morphological adaptations to limit pollen collection by bees, thus we assessed their potential for physical, nutritional, and chemical pollen traits that might act as defenses to limit pollen loss to generalist pollinators. Bumble bee (Bombus impatiens) microcolonies experienced reduced pollen consumption, mortality, and reproduction as well as increased stress responses when exposed to nutritional and mechanical pollen defenses. These bees also experienced physiological effects of these defenses in the form of hindgut expansion and gut melanization. chemical defenses alone increased the area of gut melanization in larger bees and induced possible compensatory feeding. Together, these results suggest that generalist bumble bees avoid collecting cucurbit pollen due to the physiological costs of physical and chemical pollen defenses.
Summary There is a widespread recognition that above‐ and below‐ground organisms are linked through their interactions with host plants that span terrestrial subsystems. In addition to direct effects on plants, soil organisms such as root herbivores can indirectly alter interactions between plants and other community members, with potentially important effects on plant growth and fitness. We manipulated root herbivory by Acalymma vittatum in Cucumis sativus to determine indirect effects on arbuscular mycorrhizal fungi, leaf herbivory, the leaf pathogen downy mildew and pollinators. We also manipulated pollen receipt by plants to determine whether root herbivory reduced plant reproduction through changes in pollinator visitation. Overall, root herbivory had strong net negative effects on plant growth and fitness, with 34% reductions in both leaf and fruit production by high root damage levels relative to control, despite reduced infection by downy mildew. High root herbivory also reduced floral visitation by 39%, apparently due to lower flower production, as flower size and scent were unaffected. Above‐ground herbivory was not affected by root herbivores. Although root herbivory reduced pollinator visits, pollen receipt manipulations had no effect on fruit set, indicating that reduced pollinator service did not affect plant reproduction. Synthesis. Root herbivory had indirect effects on a range of community members, including mutualists and antagonists both above‐ and below‐ground. Although reduced pathogen infection associated with root herbivory would be expected to benefit plants, root herbivory had an overall strong negative effect on plant growth and reproduction, indicating that direct negative effects over‐rode any potential indirect benefits.
2019. Secondary metabolites from nectar and pollen: a resource for ecological and evolutionary studies. Ecology 100(4):
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.