Objetivo: Identificar los factores de riesgo asociados con la mortalidad a las seis semanas. Diseño: Estudio prospectivo multicéntrico. Ámbito: 26 UCI de Andalucía. Pacientes o participantes: Pacientes ingresados en UCI por neumonía grave por SARS COV 2 en el periodo de tiempo comprendido entre el 8 de marzo y el 30 de mayo. Intervenciones: Ninguna. Variables de interés principales: características demográficas, clínicas y escalas de gravedad. Se analizaron tratamientos de soporte, fármacos y la mortalidad. Resultados: 495 pacientes fueron incluidos, 73 fueron excluidos por incompletos. 422 pacientes fueron incluidos en el análisis final. La mediana de edad fue de 63 años, 305 (72,3%) eran hombres. La mortalidad en la UCI fue: 144/422 34%; mortalidad a los 14 días: 81/422 (19,2%); mortalidad a los 28 días: 121/422 (28,7%); mortalidad a las 6 semanas 152/422 36,5%. Los factores asociados con la mortalidad a los 42 días fueron la edad, APACHE II, SOFA >6 y LDH al ingreso > 470 U/L, uso de vasopresores, necesidad de técnicas de reemplazo de la función renal, porcentaje de linfocitos a las 72 horas del ingreso en UCI < 6,5%, y trombocitopenia, mientras que el uso de lopinavir/ritonavir fue identificado como un factor protector. Conclusiones: La edad, gravedad y fracaso orgánico junto con la necesidad de terapias de soporte fueron identificadas como factores predictores de mortalidad a las seis semanas.
As people get older, age-related alterations occur that lead to increased susceptibility to disease. In the current COVID-19 pandemic, older people are particularly susceptible to a SARS-CoV-2 infection developing into severe disease. The objective of this review was to examine the literature regarding factors that may explain the tendency of this population to develop severe COVID-19. Research articles considered in this review were searched for in EMBASE, PubMed, and Web of Science from December 2019 to December 2020. Citations were screened by two independent reviewers. Studies of the immune system in older individuals found alterations in both the adaptive and innate immune systems. The adaptive system is depressed in its functions, and the innate system is in a pro-inflammatory state that can lead to chronic disease. This proinflammatory state may be related to a severe course of disease in COVID-19. This review shows that the level of evidence supporting an association between immune alterations in the elderly and susceptibly to severe progression of SARS-CoV-2 infection is generally consistent. Preventive measures such as early antiviral treatment are of key importance for prevention of severe progression of COVID19. SARS-CoV-2 infection and pathogenesis Regarding the immunopathogenesis of COVID-19, SARS-CoV-2 uses the renin-angiotensin system (RAS) to enter, replicate, and produce damage in the cell. An important step in SARS-CoV-2 infection is the binding of the viral S protein to its receptor ACE2, a RAS component [5].
Cardiovascular complications are the main cause of mortality and morbidity in the diabetic patients, in whom changes in myocardial structure and function have been described. Numerous molecular mechanisms have been proposed that could contribute to the development of a cardiac damage. In this regard, angiotensin II (Ang II), a proinflammatory peptide that constitutes the main effector of the renin-angiotensin system (RAS) has taken a relevant role. The aim of this review was to analyze the role of Ang II in the different biochemical pathways that could be involved in the development of cardiovascular damage during diabetes. We performed an exhaustive review in the main databases, using the following terms: angiotensin II, cardiovascular damage, renin angiotensin system, inflammation, and diabetes mellitus. Classically, the RAS has been defined as a complex system of enzymes, receptors, and peptides that help control the blood pressure and the fluid homeostasis. However, in recent years, this concept has undergone substantial changes. Although this system has been known for decades, recent discoveries in cellular and molecular biology, as well as cardiovascular physiology, have introduced a better understanding of its function and relationship to the development of the diabetic cardiomyopathy.
Camelids (camels, dromedaries, alpacas, llamas, and vicuZas) contain in their serum conventional heterodimeric antibodies as well as antibodies with no light chains (L) in their structure and composed of only heavy chains (H), called as HcAbs (heavy chain antibodies). Variable fragments derived from these antibodies, called as VHH or nanoantibodies (Nbs), have also been described. Since their discovery, Nbs have been widely used in the fields of research, diagnostics, and pharmacotherapy. Despite being approximately one-tenth the size of a conventional antibody, they retain similar specificity and affinity to conventional antibodies and are much easier to clone and manipulate. Their unique properties such as small size, high stability, strong antigen binding affinity, water solubility, and natural origin make them suitable for the development of biopharmaceuticals and nanoreagents. The present review aims to describe the main structural and biochemical characteristics of these antibodies and to provide an update on their applications in research, biotechnology, and medicine. For this purpose, an exhaustive search of the biomedical literature was performed in the following databases: Medline (PubMed), Google Scholar, and ScienceDirect. Meta-analyses, observational studies, review articles, and clinical guidelines were reviewed. Only original articles were considered to assess the quality of the evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.