CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.
To compare the survival of women with uterine papillary serous carcinoma (UPSC) and clear cell carcinoma (CC) to those with grade 3 endometrioid uterine carcinoma (G3EC). Demographic, pathologic, treatment, and survival information were obtained from the Surveillance, Epidemiology, and End Results Program from 1988 to 2001. Data were analysed using Kaplan -Meier and Cox proportional hazards regression methods. Of 4180 women, 1473 had UPSC, 391 had CC, and 2316 had G3EC cancers. Uterine papillary serous carcinoma and CC patients were older (median age: 70 years and 68 vs 66 years, respectively; Po0.0001) and more likely to be black compared to G3EC (15 and 12% vs 7%; Po0.0001). A higher proportion of UPSC and CC patients had stage III -IV disease compared to G3EC patients (52 and 36% vs 29%; Po0.0001). Uterine papillary serous carcinoma, CC and G3EC patients represent 10, 3, and 15% of endometrial cancers but account for 39, 8, and 27% of cancer deaths, respectively. The 5-year disease-specific survivals for women with UPSC, CC and G3EC were 55, 68, and 77%, respectively (Po0.0001). The survival differences between UPSC, CC and G3EC persist after controlling for stage I -II (74, 82, and 86%; Po0.0001) and stage III -IV disease (33, 40, and 54; Po0.0001). On multivariate analysis, more favourable histology (G3EC), younger age, and earlier stage were independent predictors of improved survival. Women with UPSC and CC of the uterus have a significantly poorer prognosis compared to those with G3EC. These findings should be considered in the counselling, treating and designing of future trials for these high-risk patients.
HA-1A is safe and effective for the treatment of patients with sepsis and gram-negative bacteremia.
High-grade epithelial ovarian carcinomas containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in BRCA1, RAD51C, or RAD51D was identified. In five of six paired postprogression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51C. In vitro complementation assays and a patient-derived xenograft, as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations. Significance Analyses of primary and secondary mutations in RAD51C and RAD51D provide evidence for these primary mutations in conferring PARPi sensitivity and secondary mutations as a mechanism of acquired PARPi resistance. PARPi resistance due to secondary mutations underpins the need for early delivery of PARPi therapy and for combination strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.