We consider chiral fermion confinement in scalar thick branes, which are known to localize gravity, coupled through a Yukawa term. The conditions for the confinement and their behavior in the thinwall limit are found for various different BPS branes, including double walls and branes interpolating between different AdS5 spacetimes. We show that only one massless chiral mode is localized in all these walls, whenever the wall thickness is keep finite. We also show that, independently of wall's thickness, chiral fermionic modes cannot be localized in dS4 walls embedded in a M5 spacetime. Finally, massive fermions in double wall spacetimes are also investigated. We find that, besides the massless chiral mode localization, these double walls support quasi-localized massive modes of both chiralities.
We show that the spacetimes of domain wall solutions to the coupled Einstein-scalar field equations with a given scalar field potential fall into two classes, depending on whether or not reflection symmetry on the wall is imposed. Solutions with reflection symmetry are dynamic, while the asymmetric ones are static. Asymmetric walls are asymptotically flat on one side and reduce to the Taub spacetime on the other. Examples of asymmetric thick walls in D-dimensional spacetimes are given, and results on the thin-wall limit of the dynamic, symmetric walls are extended to the asymmetric case. The particular case of symmetric, static spacetimes is considered and a new family of solutions, including previously known BPS walls, is presented. 04.20.-q, 11.27.+d
We analyse the distributional thin wall limit of self gravitating scalar field configurations representing thick domain wall geometries. We show that thick wall solutions can be generated by appropiate scaling of the thin wall ones, and obtain an exact solution for a domain wall that interpolates between AdS_4 asymptotic vacua and has a well-defined thin wall limit.Solutions representing scalar field configurations obtained via the same scaling but that do not have a thin wall limit are also presented.Comment: 10 pages, revte
We consider localization of gravity on thick branes with a non trivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z_2-symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS_5 spacetimes with different cosmological constants, which can be derived from a ``fake supergravity'' superpotential, and show that it is possible to confine gravity on such branes.Comment: Final version, minor changes, references adde
We consider the effects of spacetime curvature and brane thickness on the localization of gauge fields on a brane via kinetic terms induced by localized fermions. We find that in a warped geometry with and infinitely thin brane, both the infrared and the ultraviolet behavior of the electromagnetic propagator are affected, providing a more stringent bound on the brane's tension than that coming from the requirement of four-dimensional gravity on the brane. On the other hand, for a thick wall in a flat spacetime, where the fermions are localized by means of a Yukawa coupling, we find that 4-dimensional electromagnetism is recovered in a region bounded from above by the same critical distance appearing in the thin case, but also from below by a new scale related to the brane's thickness and the electromagnetic couplings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.