Hydrogen bonds can efficiently guide the self-assembly of organic materials, enabling to tune the properties of the aggregation processes. In the case of p-conjugated materials, several parameters such as temperature, concentration and solvent can be used to modify the aggregation state while tuning the optoelectronic properties. Chirality can be included within the impacting parameters due to the differences in molecular packing. Here, chiral and achiral thiophene-capped diketopyrrolopyrrole derivatives were designed and synthesized containing amide bonds, with the aim to study the interplay between chiral assemblies and their stabilization throughh ydrogen-bonding. Differences in aggregation properties were observed with spectroscopy and microscopy,a nd ac ontactless microwave-based technique was used to study their intrinsic chargec arrierm obility.T he positive role of hydrogen-bonding has been highlighted and the differences between chiral and achiral compoundsh ave been elucidated.
Hydrogen bonds are noncovalent interactions able to improve the electronic properties of self-assembled semiconductors. Nevertheless, it is necessary to control the parameters influencing the formation of hydrogen bonds to achieve hierarchical structures with enhanced properties. In this work, we explore two hydrogen-bonded thiophene-capped diketopyrrolopyrrole (DPP) derivatives containing amides with different topology (C- or N-centered) and compare them to a control analogue without hydrogen bonds. We demonstrate the differences in the optoelectronic and self-assembly properties of the two amide-containing DPP derivatives, as well as in their charge carrier lifetimes. We prove the superior properties of the hydrogen-bonded derivatives in comparison to the control molecule without hydrogen bonds, and show that our molecular design strategy results in supramolecular structures with particularly long charge carrier lifetimes compared to other amide-containing semiconductors reported in the literature.
Supramolecular approaches are of great interest in the design of functional materials. The types of aggregates arising from different noncovalent interactions endow materials with intriguing properties. In this sense, J-type aggregates are very attractive due to their unique optical properties and capacity to transport excitons. These features make them great candidates in the design of materials for organic electronic devices. Furthermore, the incorporation of additional hydrogen-bonding functionalities provides J-aggregates with superior directionality and connection among the different π-conjugated cores. The control over the formation of H-bonds to achieve functional aggregates is therefore a promising strategy towards controlled structures with specific functions.This review outlines the most relevant and recent works of π-conjugated systems exhibiting J-type aggregates resulting from hydrogen-bonding interactions. Different types of hydrogen-bonding functionalities will be discussed together with their roles in the aggregate properties, their impact in the optoelectronic properties, the self-assembly mechanisms, and their applications in organic electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.