This work presents the design, simulation, and implementation of a low-power electronic transformer, which output effective voltage can be controlled wirelessly through WIFI, via a user interface on a mobile phone. The methodology used in this project consists of 4 stages, a rectifier, an inverter, the inverter’s control system, and a ferrite reducer. The inverter has a full-bridge design and was implemented using MOSFET. The control system can vary the frequency and duty cycle of the output signals, by phase shifting the control signals, thus achieving the functionality of reducing the effective output voltage. Circuit design simulations were performed using PsPice Orcad. The implementation and the mathematical model of the built electronic transformer are carried out. The designed transformer operates with a maximum input voltage of 120 Vrms at 60 Hz at frequencies between 20 kHz and 30 kHz, which are controlled through the user interface; can reduce a 120 Vrms 60 Hz input signal to an effective voltage between 10 Vrms and 20 Vrms at a maximum power of 50 W. This project presents the feasibility of developing electronic transformers with variable output voltage, remotely controlled using IoT technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.