Abemaciclib, an inhibitor of cyclin dependent kinases 4 and 6 (CDK4/6), has recently been approved for the treatment of hormone receptor-positive breast cancer. In this study, we use murine syngeneic tumor models and in vitro assays to investigate the impact of abemaciclib on T cells, the tumor immune microenvironment and the ability to combine with anti-PD-L1 blockade. Abemaciclib monotherapy resulted in tumor growth delay that was associated with an increased T cell inflammatory signature in tumors. Combination with anti-PD-L1 therapy led to complete tumor regressions and immunological memory, accompanied by enhanced antigen presentation, a T cell inflamed phenotype, and enhanced cell cycle control. In vitro, treatment with abemaciclib resulted in increased activation of human T cells and upregulated expression of antigen presentation genes in MCF-7 breast cancer cells. These data collectively support the clinical investigation of the combination of abemaciclib with agents such as anti-PD-L1 that modulate T cell anti-tumor immunity.
Purpose: Combination strategies leveraging chemotherapeutic agents and immunotherapy have held the promise as a method to improve benefit for patients with cancer. However, most chemotherapies have detrimental effects on immune homeostasis and differ in their ability to induce immunogenic cell death (ICD). The approval of pemetrexed and carboplatin with anti-PD-1 (pembrolizumab) for treatment of non-small cell lung cancer represents the first approved chemotherapy and immunotherapy combination. Although the clinical data suggest a positive interaction between pemetrexed-based chemotherapy and immunotherapy, the underlying mechanism remains unknown.Experimental Design: Mouse tumor models (MC38, Colon26) and high-content biomarker studies (flow cytometry, Quantigene Plex, and nCounter gene expression analysis) were deployed to obtain insights into the mechanistic rationale behind the efficacy observed with pemetrexed/anti-PD-L1 combination. ICD in tumor cell lines was assessed by calreticulin and HMGB-1 immunoassays, and metabolic function of primary T cells was evaluated by Seahorse analysis.Results: Pemetrexed treatment alone increased T-cell activation in mouse tumors in vivo, robustly induced ICD in mouse tumor cells and exerted T-cell-intrinsic effects exemplified by augmented mitochondrial function and enhanced T-cell activation in vitro. Increased antitumor efficacy and pronounced inflamed/immune activation were observed when pemetrexed was combined with anti-PD-L1.Conclusions: Pemetrexed augments systemic intratumor immune responses through tumor intrinsic mechanisms including immunogenic cell death, T-cell-intrinsic mechanisms enhancing mitochondrial biogenesis leading to increased T-cell infiltration/activation along with modulation of innate immune pathways, which are significantly enhanced in combination with PD-1 pathway blockade.See related commentary by Buque et al., p. 6890
Prognosis for patients with recurrent and/or metastatic head and neck squamous cell carcinoma (HNSCC) remains poor. Development of more effective and less toxic targeted therapies is necessary for HNSCC patients. Checkpoint kinase 1 (CHK1) plays a vital role in cell cycle regulation and is a promising therapeutic target in HNSCC. Prexasertib, a CHK1 inhibitor, induces DNA damage and cell death, however, its effect on the tumor immune microenvironment (TIME) is largely unknown. Therefore, we evaluated a short-term and long-term effects of prexasertib in HNSCC and its TIME. Prexasertib caused increased DNA damage and cell death in vitro and significant tumor regression and improved survival in vivo. The gene expression and multiplex immunohistochemistry (mIHC) analyses of the in vivo tumors demonstrated increased expression of genes that are related to T-cell activation and increased immune cell trafficking, and decreased expression of genes that related to immunosuppression. However, increased expression of genes related to immunosuppression emerged over time suggesting evasion of immune surveillances. These findings in gene expression analyses were confirmed using mIHC which showed differential modulation of TIME in the tumor margins and as well as cores over time. These results suggest that evasion of immune surveillance, at least in part, may contribute to the acquired resistance to prexasertib in HNSCC. K E Y W O R D S gene expression, head and neck squamous cell carcinoma (HNSCC), multiplex immunohistochemical staining, prexasertib, tumor immune microenvironment 1 | INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide with a global estimate of more than 650,000 new cases and 330,000 deaths annually. 1 The common risk factors for HNSCC are the consumption of tobacco and alcohol, and human papillomavirus (HPV) infection. 2,3 Despite improvements in multimodality therapies including radiation, surgery, chemotherapy, and most recently immunotherapy, the 5-year survival rate of HNSCC patients remains poor due to its recurrence and metastasis. 4 Therefore, novel therapies are urgently needed for HNSCC.
Background: Recently, pemetrexed and carboplatin in combination with PD–1 antibody (pembrolizumab) demonstrated markedly improved clinical outcome in NSCLC patients (KEYNOTE–021G trial) suggesting a positive interaction between pemetrexed–based chemotherapy and immunotherapy. However, the role of pemetrexed in modulating antitumor immune response is largely unknown. The objective of this study was to characterize the effects of pemetrexed on intra–tumor immune response in monotherapy and combination with carboplatin or PD–1 pathway blockade in preclinical models. Methods: Mice bearing syngeneic MC38 or Colon26 tumors were treated with pemetrexed with or without carboplatin or anti–mouse PD–L1 antibody (178G7). Immune cell subsets and immune–related changes in mouse tumor tissue and T cells were assessed by flow cytometry and gene expression analysis (Quantigene Plex and nanoString nCounter assays). Effects of pemetrexed on immunogenic cell death in tumor cells and mitochondrial respiration in T cells were evaluated by HMGB1 ELISA and Agilent Seahorse XF analysis, respectively. Results: In MC38 tumors, pemetrexed monotherapy demonstrated a trend towards an increased frequency of intratumoral leukocytes and total and cycling (Ki67+) T cells accompanied by immune–related gene expression changes indicative of enhanced antigen presentation, T cell infiltration and/or activation and down–modulation of the myeloid cell compartment. Immune gene expression signature induced by pemetrexed was largely unaffected by carboplatin. In both MC38 and Colon26 tumor cells, in vitro treatment with pemetrexed induced a robust release of HMGB1 indicative of immunogenic cell death. Proliferation of primary human T cells stimulated with CD3/CD28 was inhibited by pemetrexed in a dose–dependent manner. At clinically relevant concentrations pemetrexed also enhanced T cell activation phenotype exemplified by an increased frequency of CD137+, GITR+ and PD–L1+ T cells as well as upregulation of multiple interferon gamma–induced genes, and increased mitochondrial respiration. In both MC38 and Colon26 models, treatment with pemetrexed and 178G7 demonstrated a combination benefit compared to either monotherapy, and nCounter profiling of Colon26 tumors followed by Ingenuity Pathway Analysis revealed that improved antigen presentation, enhanced T cell and cytokine signaling and an engagement of CD4+ T cell–mediated immunity might underlie this combination effect. Conclusions: Pemetrexed promotes intra–tumor T cell–mediated immune response through immunogenic tumor cell death and increased activation and metabolic fitness of T cells leading to an enhanced anti–tumor efficacy in combination with PD–L1 antibody. Citation Format: Ruslan Novosiadly, David Schaer, Nelusha Amaladas, Erik Rasmussen, Zhao Hai Lu, Andreas Sonyi, Carmine Carpenito, Yanxia Li, Shuang Luo, Andrew Capen, Catalina Meyer, Xiaodong Huang, Jason Manro, Gregory Donoho, Thompson Doman, Gerald Hall, Sandaruwan Geeganage, Michael Kalos. Pemetrexed enhances anti-tumor efficacy of PD1 pathway blockade by promoting intra tumor immune response via immunogenic tumor cell death and T cell intrinsic mechanisms [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 4549.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.