Brewer's spent grain (BSG) is a by-product generated during the brewing process. It is a rich source of dietary fibre and proteins, with great potential to increase nutritional value of food products. In this research different quantities of fresh (non-dried and non-milled) brewer's spent grain (15, 25 and 50%) were added to wheat flour on a replacement basis in order to evaluate its effect on fibre and protein content, instrumental parameters of colour, microbial stability and sensory characteristics of cookies. Protein and fibre content of cookies increased following the addition of BSG from 7.55% to 9.69% and 6.8 to 15.55%, respectively. Considering the colour characteristics, addition of BSG decreased L* and b* values, while a* values increased. Enterobacteriaceae, Escherichia coli, Clostridium spp., yeasts and moulds were not detected in cookie samples, while the Enterobacteriaceae were detected (40 cfu/g) in fresh BSG. The addition of 25% of BSG resulted in best sensory characteristics of cookies in terms of surface appearance, hardness, grittiness and flavour. The results have shown that fresh BSG has a potential to increase nutritional value of the cookies without negative influence on cookie sensory characteristics and microbiological stability.
The aim of this study was the optimization of supercritical fluid extraction (SFE) of wheat germ oil obtained as by‐product from industrial mill. Extraction kinetics modeling and response surface methodology (RSM) were used for that purpose. SFE was performed with broadening Box‐Behnken experimental design, where pressure (250–350 bar), temperature (40–60°C), and CO2 flow rate (0.2–0.4 kg/hr) were used as independent variables. Five empirical kinetic equations were successfully utilized for modeling of SFE. Model IV (Kandiah and Spiro model) provided the best fit with experimental data, according to statistical parameters (R2, sum of squared errors and average absolute relative deviation). Furthermore, initial slope calculated from this model was used as a response variable for RSM optimization. It could be concluded that SFE should be performed at elevated pressure (350 bar) and CO2 flow rate (0.4 kg/hr), while temperature should be held at a lower level (40°C) in order to achieve a maximal initial slope.
Practical applications
Optimization and modeling of industrial processes are crucial factors that will determine its efficiency and profitability. This research provided information about modeling of green and environmentally friendly extraction technique, that is, SFE, which could be successfully utilized for recovery of valuable oil from food industry by‐product, that is, wheat germ. Commonly used empirical models were successfully applied for modeling of extraction process and influence of SFE factors on model parameters was determined providing information about mass transfer phenomena during extraction. Further investigation provided determination of the highest initial extraction rate constant which could be applicable for optimization of industrial scale processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.