Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features.
Survival and life quality of breast cancer patients could be improved by more aggressive chemotherapy for those at high metastasis risk and less intense treatments for low-risk patients. Such personalized treatment cannot be currently achieved due to the insufficient reliability of metastasis risk prognosis. The purpose of this study was therefore, to identify novel histopathological prognostic markers of metastasis risk through exhaustive computational image analysis of 80 size and shape subsets of epithelial clusters in breast tumors. The group of 102 patients had a follow-up median of 12.3 years, without lymph node spread and systemic treatments. Epithelial cells were stained by the AE1/AE3 pan-cytokeratin antibody cocktail. The size and shape subsets of the stained epithelial cell clusters were defined in each image by use of the circularity and size filters and analyzed for prognostic performance. Epithelial areas with the optimal prognostic performance were uniformly small and round and could be recognized as individual epithelial cells scattered in tumor stroma. Their count achieved an area under the receiver operating characteristic curve (AUC) of 0.82, total area (AUC = 0.77), average size (AUC = 0.63), and circularity (AUC = 0.62). In conclusion, by use of computational image analysis as a hypothesis-free discovery tool, this study reveals the histomorphological marker with a high prognostic value that is simple and therefore easy to quantify by visual microscopy.
Aim: This study aimed to improve osteosarcoma chemoresponsiveness prediction by optimization of computational analysis of MRIs. Patients & methods: Our retrospective predictive model involved osteosarcoma patients with MRI scans performed before OsteoSa MAP neoadjuvant cytotoxic chemotherapy. Results: We found that several monofractal and multifractal algorithms were able to classify tumors according to their chemoresponsiveness. The predictive clues were defined as morphological complexity, homogeneity and fractality. The monofractal feature CV for Λ′(G) provided the best predictive association (area under the ROC curve = 0.88; p <0.001), followed by Y-axis intersection of the regression line for box fractal dimension, r² for FDM and tumor circularity. Conclusion: This is the first full-scale study to indicate that computational analysis of pretreatment MRIs could provide imaging biomarkers for the classification of osteosarcoma according to their chemoresponsiveness.
This study calls attention to the difference between traditional box-counting method and its modification. The appropriate scaling factor, influence on image size and resolution, and image rotation, as well as different image presentation, are showed on the sample of asymmetrical neurons from the monkey dentate nucleus. The standard BC method and its modification were evaluated on the sample of 2D neuronal images from the human neostriatum. In addition, three box dimensions (which estimate the space-filling property, the shape, complexity, and the irregularity of dendritic tree) were used to evaluate differences in the morphology of type III aspiny neurons between two parts of the neostriatum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.