Here a matlab script was presented for lane tracking and band detection on the pulsed field gel electrophoresis (PFGE) images. It can also be used as a software tool for automatic analysis of PFGE images. The data consist of several MATLAB codes which collectively have the task of lane tracking, band detecting and pattern recognition on the PFGE images. The lane tracking stage is semi-automatic and the band detection stage is fully automatic. Finally, the pattern of lanes that includes number of, location, width and light intensity level of bands was obtained.
This paper presents a new approach for band detection and pattern recognition for molecule types. Although a few studies have examined band detection, but there is still no automatic method that can perform well despite the high noise. The band detection algorithm was designed in two parts, including band location and lane pattern recognition. In order to improve band detection and remove undesirable bands, the shape and light intensity of the bands were used as features. One-hundred lane images were selected for the training stage and 350 lane images for the testing stage to evaluate the proposed algorithm in a random fashion. All the images were prepared using PFGE BIORAD at the Microbiology Laboratory of Kermanshah University of Medical Sciences. An adaptive median filter with a filter size of 5x5 was selected as the optimal filter for removing noise. The results showed that the proposed algorithm has a 98.45% accuracy and is associated with less errors compared to other methods. The proposed algorithm has a good accuracy for band detection in pulsed-field gel electrophoresis images. Considering the shape of the peaks caused by the bands in the vertical projection profile of the signal, this method can reduce band detection errors. To improve accuracy, we recommend that the designed algorithm be examined for other types of molecules as well.
This paper presents a new approach for band detection and pattern recognition for molecule types. Although a few studies have examined band detection, but there is still no automatic method that can perform well despite the high noise. The band detection algorithm was designed in two parts, including band location and lane pattern recognition. In order to improve band detection and remove undesirable bands, the shape and light intensity of the bands were used as features. One-hundred lane images were selected for the training stage and 350 lane images for the testing stage to evaluate the proposed algorithm in a random fashion. All the images were prepared using PFGE BIORAD at the Microbiology Laboratory of Kermanshah University of Medical Sciences. An adaptive median filter with a filter size of 5x5 was selected as the optimal filter for removing noise. The results showed that the proposed algorithm has a 98.45% accuracy and is associated with less errors compared to other methods. The proposed algorithm has a good accuracy for band detection in pulsed-field gel electrophoresis images. Considering the shape of the peaks caused by the bands in the vertical projection profile of the signal, this method can reduce band detection errors. To improve accuracy, we recommend that the designed algorithm be examined for other types of molecules as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.