The aim of this article is to automate quality control once a product, essentially a central processing unit system, is manufactured. Creating a model that helps in quality control, increases efficiency and speed of production by rejecting abnormal products automatically is vital. A widely used technology for this is to use industrial image processing that is based on the use of special cameras or imaging systems installed within the production line. In this article, we propose a highly efficient model to automate central processing unit system production lines in an industry such that images of the production lines are scanned and any abnormalities in their assembly are pointed out by the model and information about this is transferred to the system administrator via a cyber-physical cloud system network. A machine learning-based approach is used for proper classification. This model not only focuses on just the abnormalities but also helps in configuring the angles from which images of the production are taken, and our methods show 92% accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.